955 resultados para Cusp coverage
Resumo:
Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.
Resumo:
The Polar spacecraft passed through a region near the dayside magnetopause on May 29, 1996, at a geocentric distance of similar to 8 R-E and high, northern magnetic latitudes. The interplanetary magnetic field (IMF) was northward during the pass. Data from the Thermal Ion Dynamics Experiment revealed the existence of low-speed (similar to 50 km s(-1)) ion D-shaped distributions mixed with cold ions (similar to 2 eV) over a period of 2.5 hours. These ions were traveling parallel to the magnetic field toward the Northern Hemisphere ionosphere and were convecting primarily eastward. The D-shaped distributions are distinct from a convecting Maxwellian and, along with the magnetic field direction, are taken as evidence that the spacecraft was inside the magnetosphere and not in the magnetosheath. Furthermore, the absence of ions in the antiparallel direction is taken as evidence that low-shear merging was occurring at a location southward of the spacecraft and equatorward of the Southern Hemisphere cusp. The cold ions were of ionospheric origin, with initially slow field-aligned speeds, which were accelerated upon reflection from the magnetopause. These observations provide significant new evidence consistent with component magnetic merging sites equatorward of the cusp for northward IMF.
Resumo:
Observations are presented of the response of the dayside cusp/cleft aurora to changes in both the clock and elevation angles of the interplanetary magnetic field (IMF) vector, as monitored by the WIND spacecraft. The auroral observations are made in 630 nm light at the winter solstice near magnetic noon, using an all-sky camera and a meridian-scanning photometer on the island of Spitsbergen. The dominant change was the response to a northward turning of the IMF which caused a poleward retreat of the dayside aurora. A second, higher-latitude band of aurora was seen to form following the northward turning, which is interpreted as the effect of lobe reconnection which reconfigures open flux. We suggest that this was made possible in the winter hemisphere, despite the effect of the Earth's dipole tilt, by a relatively large negative X component of the IMF. A series of five events then formed in the poleward band and these propagated in a southwestward direction and faded at the equatorward edge of the lower-latitude band as it migrated poleward. It is shown that the auroral observations are consistent with overdraped lobe flux being generated by lobe reconnection in the winter hemisphere and subsequently being re-closed by lobe reconnection in the summer hemisphere. We propose that the balance between the reconnection rates at these two sites is modulated by the IMF elevation angle, such that when the IMF points more directly northward, the summer lobe reconnection site dominates, re-closing all overdraped lobe flux and eventually becoming disconnected from the Northern Hemisphere.
Resumo:
The distinction between plasma properties in different dayside regions in the Earth's magnetosphere is of strong interest as it is often indicative of specific physical processes. This is certainly true for the distinction between low latitude boundary layer (LLBL) and cusp plasma, which has been attributed to the effects of plasma diffusion across the magnetopause (LLBL) versus more direct entry of magnetosheath plasma(cusp). It is also the case, however, that quite different plasma regions can result more simply from a common source plasma, and from different stages of temporal evolution of the plasma associated with magnetospheric convection. In this paper, we show that, for southward interplanetary magnetic field (IMF) conditions, the distinction between the cusp and cleft/LLBL at low altitudes may result from;the single process of magnetosheath plasma entry into the magnetosphere on reconnected field lines. The different plasma characteristics of the two regions result from the properties of the source magnetosheath ion distribution and the effects of magnetic reconnection. Using well known properties of the magnetosheath, several predictions concerning the cusp and cleft/ LLBL precipitation are readily derived.
Resumo:
It is shown that the open magnetosphere model can reproduce both the down-going and the up-going magnetosheath ions seen in the cusp and mantle regions by the Polar satellite at middle altitudes. ?he pass studied shows a series of discontinuities in the ion dispersion, most of which are shown to arise from pulses of magnetopause reconnection rate. A total of 9 pulses are detected in an interval estimated to be about 30 min long, giving a mean repetition period of about 3 min: they vary in length between 0.5 min and 3.5 min and are separated by periods of much slower reconnection of duration 1-3 min. One step is not as predicted for reconnection rate pulses but is explained in terms of compressive motions caused by a pulse of solar wind dynamic pressure. The reconnection site is found to be 16 +/- 3 R-E from the ionosphere along the separatrix field line, placing it at low latitudes on the dayside magnetopause.
Resumo:
Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.
Resumo:
We present evidence for the acceleration of magnetospheric ions by reflection off two Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the reconnecting magnetopause. The “exterior” wave stands in the inflow from the magnetosheath and is the magnetopause, in the sense that the majority of the field rotation occurs there. The other, “interior” wave stands in the inflow region on the magnetospheric side of the boundary. The population reflected by the interior wave is the more highly energized of the two and appears at low altitudes on open field lines, immediately equatorward of the cusp precipitation. In addition, we identify the population of magnetosheath ions transmitted across the exterior Alfvén wave, as well as a population of magnetospheric ions which are accelerated, after transmission through the interior wave, by reflection off the exterior wave. The ion populations near the X line are modeled and, with allowance for time-of-flight effects, are also derived from observations in the dayside auroral ionosphere. Agreement between observed and theoretical spectra is very good and the theory also explains the observed total fluxes and average energies of the precipitations poleward of the open/closed field line boundary. The results offer a physical interpretation of all the various classifications of precipitation into the dayside ionosphere (central plasma sheet, dayside boundary plasma sheet, void, low-latitude boundary layer, cusp, and mantle) and allow the conditions in both the magnetosphere and the magnetosheath adjacent to the X line to be studied.
Resumo:
We present an analysis of the accuracy of the method introduced by Lockwood et al. (1994) for the determination of the magnetopause reconnection rate from the dispersion of precipitating ions in the ionospheric cusp region. Tests are made by applying the method to synthesised data. The simulated cusp ion precipitation data are produced by an analytic model of the evolution of newly-opened field lines, along which magnetosheath ions are firstly injected across the magnetopause and then dispersed as they propagate into the ionosphere. The rate at which these newly opened field lines are generated by reconnection can be varied. The derived reconnection rate estimates are then compared with the input variation to the model and the accuracy of the method assessed. Results are presented for steady-state reconnection, for continuous reconnection showing a sine-wave variation in rate and for reconnection which only occurs in square wave pulses. It is found that the method always yields the total flux reconnected (per unit length of the open-closed field-line boundary) to within an accuracy of better than 5%, but that pulses tend to be smoothed so that the peak reconnection rate within the pulse is underestimated and the pulse length is overestimated. This smoothing is reduced if the separation between energy channels of the instrument is reduced; however this also acts to increase the experimental uncertainty in the estimates, an effect which can be countered by improving the time resolution of the observations. The limited time resolution of the data is shown to set a minimum reconnection rate below which the method gives spurious short-period oscillations about the true value. Various examples of reconnection rate variations derived from cusp observations are discussed in the light of this analysis.
Resumo:
An explanation of overlapping cusp ion injections is presented using the pulsating cusp model of the effects of magnetopause reconnection. It is shown that two populations of cusp ions, covering separated energy ranges, can be seen simultaneously by low- or mid-altitude satellites because of the combined effect of the acceleration and the straightening of newly-opened field lines as they evolve away from the reconnection site. Observations of such signatures, recently reported in data from the Viking and Freja satellites, are discussed in terms of pulsed and steady reconnection.
Resumo:
The extended flight of the Airborne Ionospheric Observatory during the Geospace Environment Modeling (GEM) Pilot program on January 16, 1990, allowed continuous all-sky monitoring of the two-dimensional ionospheric footprint of the northward interplanetary magnetic field (IMF) cusp in several wavelengths. Especially important in determining the locus of magnetosheath electron precipitation was the 630.0-nm red line emission. The most striking morphological change in the images was the transient appearance of zonally elongated regions of enhanced 630.0-nm emission which resembled “rays” emanating from the centroid of the precipitation. The appearance of these rays was strongly correlated with the Y component of the IMF: when the magnitude of By was large compared to Bz, the rays appeared; otherwise, the distribution was relatively unstructured. Late in the flight the field of view of the imager included the field of view of flow measurements from the European incoherent scatter radar (EISCAT). The rays visible in 630.0-nm emission exactly aligned with the position of strong flow jets observed by EISCAT. We attribute this correspondence to the requirement of quasi-neutrality; namely, the soft electrons have their largest precipitating fluxes where the bulk of the ions precipitate. The ions, in regions of strong convective flow, are spread out farther along the flow path than in regions of weaker flow. The occurrence and direction of these flow bursts are controlled by the IMF in a manner consistent with newly opened flux tubes; i.e., when |By| > |Bz|, tension in the reconnected field lines produce east-west flow regions downstream of the ionospheric projection of the x line. We interpret the optical rays (flow bursts), which typically last between 5 and 15 min, as evidence of periods of enhanced dayside (or lobe) reconnection when |By| > |Bz|. The length of the reconnection pulse is difficult to determine, however, since strong zonal flows would be expected to persist until the tension force in the field line has decayed, even if the duration of the enhanced reconnection was relatively short.
Resumo:
We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.
Resumo:
We present an analysis of a “quasi-steady” cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km s−1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and Alfvén speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate.
Resumo:
We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the “pulsating cusp” model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal "quasi-steady reconnection" (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that “quasi-steady” in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.
Resumo:
We present measurements of the ionospheric plasma flow over the range of invariant latitudes 71–76°, observed at 10-second resolution using both the EISCAT radars, with simultaneous observations of the 630 nm cusp/cleft aurora made by a meridian-scanning photometer at Ny Ålesund, Svalbard. A major increase in the trans-auroral voltage from 5 to 40 kV (associated with sunward convection in the early afternoon sector) is found to follow a southward motion of the aurora and coincide with the onset of regular transient auroral breakup events. It is shown that these observations are consistent with recent theoretical work on how ionospheric flows are excited by time-dependent reconnection at the dayside magnetopause.