920 resultados para Cryptic speciation
Resumo:
A method using L-cysteine for the determination of arsenous acid (As(III)), arsenic acid (As(V)), monomethylarsonic acid (MMAA), and dimethylarsinic acid (DMAA) by hydride generation was demonstrated. The instrument used was a d.c. plasma atomic emission spectrometer (OCP-AES). Complete recovery was reported for As(III), As(V), and DMAA while 86% recovery was reported for MMAA. Detection limits were determined, as arsenic for the species listed previously, to be 1.2, 0.8, 1.1, and 1.0 ngemL-l, respectively. Precision values, at 50 ngemL-1 arsenic concentration, were f.80/0, 2.50/0, 2.6% and 2.6% relative standard deviation, respectively. The L-cysteine reagent was compared directly with the conventional hydride generation technique which uses a potassium iodide-hydrochloric acid medium. Recoveries using L-cysteine when compared with the conventional method provided the following results: similar recoveries were obtained for As(III), slightly better recoveries were obtained for As(V) and MMAA, and significantly better recoveries for DMAA. In addition, tall and sharp peak shapes were observed for all four species when using L-cysteine. The arsenic speciation method involved separation by ion exchange .. high perfonnance liquid chromatography (HPLC) with on-line hydride generation using the L.. cysteine reagent and measurement byOCP-AES. Total analysis time per sample was 12 min while the time between the start of subsequent runs was approximately 20 min. A binary . gradient elution program, which incorporated the following two eluents: 0.01 and 0.5 mM tri.. sodium citrate both containing 5% methanol (v/v) and both at a pH of approximately 9, was used during the separation by HPLC. Recoveries of the four species which were measured as peak area, and were normalized against As(III), were 880/0, 290/0, and 40% for DMAA, MMAA and As(V), respectively. Resolution factors between adjacent analyte peaks of As(III) and DMAA was 1.1; DMAA and MMAA was 1.3; and MMAA and As(V) was 8.6. During the arsenic speciation study, signals from the d.c. plasma optical system were measured using a new photon-signal integrating device. The_new photon integrator developed and built in this laboratory was based on a previously published design which was further modified to reflect current available hardware. This photon integrator was interfaced to a personal computer through an AID convertor. The .photon integrator has adjustable threshold settings and an adjustable post-gain device.
Resumo:
Although exceptions may be readily identified, two generalizations concerning genetic differences among species may be drawn from the available allozyme and chromosome data. First, structural gene differences among species vary widely. In many cases, species pairs do not differ more than intraspecific populations. This suggests that either very few or no gene substitutions are required to produce barriers to reproduction (Avise 1976). Second, chromosome form and/or number differs among even closely related species (White 1963; 1978; Fredga 1977; Wright 1970). Many of the observed chromosomal differences involve translocational rearrangements; these produce severe fitness depression in heterozygotes and were, thus, long considered unlikely candidates for the fixation required of genetic changes leading to speciation (Wright 1977). Nonetheless, the fact that species differences are frequently translocational argues convincingly for their fixation despite prejudices to the contrary. Haldane's rule states that in the F of interspecific crosses, the heterogametic sex is absent or sterile in the preponderance of cases (Haldane 1932). This rule definitely applies in the genus Dr°sophila (Ehrman 1962). Sex chromosome translocations do not impose a fitness depression as severe as that imposed by autosomal translocations, and X-Y translocations may account for Haldane's rule (Haldane 1932). Consequently a study of the fit ness parameters of an X·yL and a yS chromosome in Drosophila melanogaster populations was initiated by Tracey (1972). Preliminary results suggested that x.yL//YSmales enjoyed a mating advantage with X·yL//X·yL females, that this advantage was frequency dependent, that the translocation produced sexual isolation and that interactions between the yL, yS and a yellow marker contributed to the observed isolation (Tracey and Espinet 1976; Espinet and Tracey 1976). Encouraged by the results of these prelimimary studies, further experiments were performed to clarify the genetic nature of the observed sexual isolation, S the reality of the y frequency dependent fitness .and the behavioural changes, if any, produced by the translocation. The results of this work are reported herein. Although the marker genes used in earlier studies, sparkling poliert an d yellow have both been found to affect activity,but only yellow effects asymmetric sexual isolation. In addition yellow effects isolation through an interaction with the T(X-y) chromosomes, yS also effects isolation, and translocational strains are isolated from those of normal karyotype in the absence of marker gene differences. When yS chromosomes are in competition with y chromosomes on an X.yL background, yS males are at a distinct advantage only when their frequency is less than 97%. The sex chromosome translocation alters the normal courtship pattern by the incorporation of circling between vibration and licking in the male repertoire. Finally a model of speciation base on the fixation of this sex chromosome translocation in a geographically isolated gene pool is proposed.
Resumo:
Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized as species complexes whose members are often indistinguishable morphologically but identifiable based on ecological, genetic, or behavioural data. Because the members of species complexes often differ in their vector potential, accurate identification of vector species is essential for successful mosquito control. To investigate the cryptic species status of Anopheles mosquitoes in Canada, specimens were collected from across the country and examined using morphological, molecular, and ecological data. Six of the seven traditionally recognised species from Canada were collected from locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology examined using scanning electron microscopy. Morphological identification of adult and larval specimens suggested that two described cryptic species, An. perplexens and An. smaragdinus, were present in Canada. DNA sequence data were analysed for evidence of cryptic species using three molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in most species «1 %), except for An. punctipennis with 2% sequence divergence between those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence divergence between populations from Manitoulin Island (NO) and Long Point Provincial Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular data revealed the presence of two putative cryptic species within two species examined (i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the presence of either An. perplexens or An. smaragdinus in Canada despite the morphological assessments. Ecological data from all collection sites were recorded and are available in an online database designed to manage all collection and identification data. Current bionomic information, including regional abundance, larval habitat, and species associations, was determined for each species. This multidisciplinary study of Anopheles mosquitoes is the first detailed investigation of these potential disease vectors in Canada and demonstrates the importance of an integrated approach to anopheline systematics that includes molecular data.
Resumo:
The proposed study is an attempt to quantify and study the seasonal and spatial variations in the distribution of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb among the various geochemical phases in the surficial sediments of Chitrapuzha river. The study also estimates the concentration of heavy metals in dissolved, particulate and sediments and their variation in seasonal and spatial distribution. Chitrapuzha River originates as a small stream from the upper reaches of high ranges in the eastern boundary of Kerala, passes through the valley and finally joints in the Cochin backwaters. Numerous industrial units located along the banks of the river discharge treated and untreated effluents into the water. These are long standing local complaints about water pollution causing fish mortality and serious damage to agricultural crops resulting in extensive unemployment in the area. The river is thus of considerable social and economic importance.
Resumo:
Mangrove forests are best developed on tropical shorelines where there is an extensive intertidal zone, with an abundant supply of fine-grained sediment. It receives a mixture of liable and refractory organic and inorganic phosphorus compounds from the overlying water and the surrounding landmasses. Organic phosphorus is not available for mangrove plant nutrition. While inorganic phosphate represents the largest potential pool of plant-available and which are bound in the form of Ca, Fe and Al phosphate. It deals with the scientific investigations on mangrove systems in the Kerala coastline and to investigate nutrient distribution of mangrove ecosystems of greater Cochin area. It discusses the description of study areas such as Murikkumpadam-Vypeen Island and Aroor. Then it deals with the spatial and seasonal distribution of dissolved ammonia, nitrite, nitrate, inorganic phosphate, organic phosphate and the total phosphorus in surface waters of mangrove fringed creeks. Then it discusses the geochemical compositions of mangrove-fringed sediments and also the chemical speciation of phosphorus in sediment cores.
Resumo:
Dept. of chemical oceanography, Cochin University of Science and Technology
Resumo:
This thesis Entitled Trace metal speciation in the cochin estuary.Natural waters provide a favourable environment for speciation studies because of the prevailing variable chemical matrix and the variety of metal forms which may exist there.An estuary is a mixing zone of riverine and oceanic waters with widely varying compositions where end members interact both physically and chemically. The trace element chemistry in the estuarine environment has been an area of considerable research in the past decades. The trace metal distribution in the Cochin estuary is considerably influenced by the tropical features of the location and by human activities. The lower Periyar river and the Cochin estuary have been particularly selected for this investigation in view of the impact of trace metals on the estuarine ecosystem as well as in attempt quantify the phenomenon of metal speciation in the waters of a tropical coastal plain waterbody. If the concentration in the water media is very low, then, many of the fractions that could be estimated by speciation schemes for metals will fall below the detection limits, a factor which is undesirable.The study would also delineate the features of metal speciation which modify the chemical regime of ionic elements that traverse natural boundaries in aquatic environments, especally in those tropical areas prone to multivariate geographical settings.
Resumo:
Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.
Resumo:
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Resumo:
When considering contaminated site ecology and ecological risk assessment a key question is whether organisms that appear unaffected by accumulation of contaminants are tolerant or resistant to those contaminants. A population of Dendrodrilus rubidus Savigny earthworms from the Coniston Copper Mines, an area of former Cu mining, exhibit increased tolerance and accumulation of Cu relative to a nearby non-Cu exposed population. Distribution of total Cu between different body parts (posterior, anterior, body wall) of the two populations was determined after a 14 day exposure to 250 mg Cu kg(-1) in Cu-amended soil. Cu concentrations were greater in Coniston earthworms but relative proportions of Cu in different body parts were the same between populations. Cu speciation was determined using extended X-ray absorption fine structure spectroscopy (EXAFS). Cu was coordinated to 0 atoms in the exposure soil but to S atoms in the earthworms. There was no difference in this speciation between the different earthworm populations. In another experiment earthworms were exposed to a range of Cu concentrations (200-700 mg Cu kg(-1)). Subcellular partitioning of accumulated Cu was determined. Coniston earthworms accumulated more Cu but relative proportions of Cu in the different fractions (cytosol > granular > tissue fragments, cell membranes, and intact cells) were the same between populations. Results suggest that Coniston D. rubidus are able to survive in the Cu-rich Coniston Copper Mines soil through enlargement of the same Cu storage reservoirs that exist in a nearby non-Cu exposed population.
Resumo:
Eisenia fetida were exposed to different concentrations (0.009, 0.049 and 0. 125 mg L-1) of Cu in an aqueous medium. Cu speciation was manipulated through the addition of different concentrations (0. 15, 0.35 and 50 mg L-1) of EDTA. Cu speciation (as labile and non-labile pools) was determined using Differential Pulse Anodic Stripping Voltammetry. Labile Cu includes free Cu ions together with weak inorganic Cu complexes and a small fraction of easily dissociable organic complexes. Metal uptake and earthworm mortality increased with total Cu concentration in the EDTA free solutions. In the presence of EDTA both metal uptake and mortality decreased. These experiments demonstrate that Cu speciation governs uptake and consequent toxicity of Cu to E. fetida. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The uptake of metals by earthworms occurs predominantly via the soil pore water, or via an uptake route which is related to the soil pore water metal concentration. However, it has been suggested that the speciation of the metal is also important. A novel technique is described which exposes Eisenia andrei Bouche to contaminant bearing solutions in which the chemical factors affecting its speciation may be individually and systematically manipulated. In a preliminary experiment, the LC50 for copper nitrate was 0.046 mg l(-1) (95 % confidence intervals: 0.03 and 0.07 mg l(-1)). There was a significant positive correlation between earthworm mortality and bulk copper concentration in solution (R-2 = 0.88, P less than or equal to 0.001), and a significant positive increase in earthworm tissue copper concentration with increasing copper concentration in solution (R-2 = 0.97, P less than or equal to 0.001). It is anticipated that quantifying the effect of soil solution chemical speciation on copper bioavailability will provide an excellent aid to understanding the importance of chemical composition and the speciation of metals, in the calculation of toxicological parameters.