960 resultados para Crust of neutron stars


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used high-resolution spectra, acquired with UVES@ESO-VLT, to determine the chemical abundances of different samples of AGB and RGB stars in 4 Galactic globular clusters, namely 47Tuc, NGC3201, M22 and M62. For almost all the analyzed AGB stars we found a clear discrepancy between the iron abundance measured from neutral lines and that obtained from single ionized lines, while this discrepancy is not obtained for the RGB samples observed in the same clusters and analyzed with the same procedure. Such a behavior exactly corresponds to what expected in the case of Non-Local Thermodynamical Equilibrium (NLTE) in the star atmosphere. These results have a huge impact on the proper determination of GC chemistry. In fact, one of the most intriguing consequences is that, at odds with previous claims, no iron spread is found in NGC3201 and M22 if the iron abundance is obtained from ionized lines only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current case study examined the effects of the STARS-PAC anxiety reduction program on the social and test anxiety levels of a middle school student. The literature supporting the effectiveness of cognitive behavioral therapy programs which incorporate methods such as those used in the STARS-PAC program were reviewed. The findings of this case study indicated decreased levels of overall anxiety during the intervention phase; however, the student’s test anxiety level displayed little improvement. Implications of the findings and for future research are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3*10**-10 to 2.5*10**-7 ccSTP/g by crushing and from 5.4*10**-8 to 2.4*10**-7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8+/-1. The lower values are attributed to radiogenic helium from in situ alüha-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ?100 km beyond the morphological hotspot track.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium isotopes are useful tracers of fluid-rock interaction in marine hydrothermal systems and provide a potential way to quantify the amount of seawater that passes through these systems. We have determined the whole-rock Sr-isotopic compositions of a section of upper oceanic crust that formed at the fast-spreading East Pacific Rise, now exposed at Hess Deep. This dataset provides the first detailed comparison for the much-studied Ocean Drilling Program (ODP) drill core from Site 504B. Whole-rock and mineral Sr concentrations indicate that Sr-exchange between hydrothermal fluids and the oceanic crust is complex, being dependent on the mineralogical reactions occurring; in particular, epidote formation takes up Sr from the fluid increasing the 87Sr/86Sr of the bulk-rock. Calculating the fluid-flux required to shift the Sr-isotopic composition of the Hess Deep sheeted-dike complex, using the approach of Bickle and Teagle (1992, doi:10.1016/0012-821X(92)90221-G) gives a fluid-flux similar to that determined for ODP Hole 504B. This suggests that the level of isotopic exchange observed in these two regions is probably typical for modern oceanic crust. Unfortunately, uncertainties in the modeling approach do not allow us to determine a fluid-flux that is directly comparable to fluxes calculated by other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

87Sr/a6Sr ratios, Sr, K, Rb and Cs contents and the petrology of basalts and secondary phases recovered from deep basement drilling at DSDP Sites 332B, 417A, 417D and 418A show that the oceanic crust alters in four distinct stages characterized by formation of palagonite, smectite and calcite (Stages I, II and III, respectively). Stage IV represents the final compaction of the crust, including a dehydration of the crust without major chemical changes. Isotopic age determinations by Hart and Staudigel (1978, doi:10.1029/GL005i012p01009) and Richardson et al. (doi:10.1029/JB085iB12p07195), show that, at least for Atlantic-type crustal regimes, Stage I and II last for a maximum of 3 m.y., and Stage III lasts beyond Stage I and II, but is probably completed in significantly less than 10 m.y. Stage IV is long-lived and may still be active at 100 m.y. Stages I and II, the phase of halmyrolysis, include geochemically significant interactions between seawater and basalt for the upper 500 m of layer II and involve volumes of seawater containing a large basaltic component. Stage III solutions show evidence of less seawater-basalt interaction, at least to depths of 500 m; calcites deposited from these solutions have Sr isotopic ratios close to seawater values; but also have very low Sr/Ca ratios indicating a large basalt Ca component in the solutions. Smectite formation is the result of the interaction of seawater and basalt. The initial 87Sr/a6Sr ratios of smectites represent the Sr isotopic composition of the solution when the smectite is being formed. Thereafter, alkalies may be continuously added to interlayer positions in the smectite in order of decreasing hydration energy (Cs is more enriched than Rb, Rb more than K). The later-formed carbonates have very low alkali concentrations, and 87Sr/86Sr ratios identical to contemporaneous seawater. Therefore, since the alkali concentrations in a whole rock sample are affected by different alteration processes, the alkali concentrations alone are not reliable indicators of the degree of alteration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of Neutron Thermal Scattering Data Uncertainties in PWRs