959 resultados para Crown lands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag+ and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag+, and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H2O)(1.5)](2)Mo6O19.CH3CN, 1, and [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)]XMo12O40.6DMF.CH3CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) Angstrom, c = 14.2676(4) Angstrom, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15,7435(17) Angstrom, c = 30.042(7) Angstrom, gamma = 120degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) Angstrom, c = 29.9778(18) Angstrom, gamma = 120degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo6O19](2-) polyoxoanions and the CH2 groups of crown ether molecules, Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo12O40](3-) (X = As and P) polyoxoanion "guests" resided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facilitated ion transfer reactions of 20 amino acids with di.benzo-18-crown-6 (DB18C6) at the water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nano-pipets were investigated systematically using cyclic voltammetry. It was found that there were only 10 amino acids, that is, Leu, Val, Ile, Phe, Trp, Met, Ala, Gly, Cys, Gln (in brief), whose protonated forms as cations can give well-defined facilitated ion transfer voltammograms within the potential window, and the reaction pathway was proven to be consistent with the transfer by interfacial complexation/dissociation (TIC/TID) mechanisms. The association constants of DB 18C6 with different amino acids in the DCE (beta(0)), and the kinetic parameters of reaction were evaluated based on the steady-state voltammetry of micro- or nano-pipets, respectively The experimental results demonstrated that the selectivity of complexation of protonated amino acid by DB18C6 compared with that of alkali metal cations was low, which can be attributed to the vicinal effect arising from steric hindrance introduced by their side group and the steric bulk effect by lipophilic stabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facilitated alkali metal ion (M+= Li+, Na+, K+, Rb+, and Cs+) transfers across the micro- and nano-water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nanopipets by dibenzo-18-crown-6 (DB18C6) have been investigated systematically using cyclic voltammetry. The theory developed by Matsuda et al. was applied to estimate the association constants of DB18C6 and M+ in the DCE phase based on the experimental voltammetric results. The kinetic measurements for alkali metal ion transfer across the W/DCE interface facilitated by DB18C6 were conducted using nanopipets or-submicropipets, and the standard rate constants (k(0)) were evaluated by analysis of the experimental voltammetric data. They increase in the following order: k(Cs+)(0) < k(Li+)(0) < k(Rb+)(0) < k(Na+)(0) < k(K+)(0), which is in accordance with their association constants except Cs+ and Li+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel dibenzo-18-crown-6 sodium isopolytungstates, [(DB18C6)(CH3OH)Na](2)W(6)O(19)(.)DB18C6(.)H(2)O 1 and [(DB18C6)(DMF)(2)Na](4)W(10)O(32)(.)2DMF(.)2H(2)O 2, have been synthesized in mixed methanol and acetonitrile solvents and characterized by elemental analysis, TGA, IR and single crystal X-ray diffraction. The compound 1 crystallizes in the monoclinic space group C2/c with a = 23.182(8), b = 19.527(2), c = 18.737(3) Angstrom, beta = 115.15(2)degrees, V = 7678(3) Angstrom(3), Z = 4, and R1(wR2) = 0.0611(0.1504). The compound 2 crystallizes in the monoclinic space group P21/n with a = 16.516(2), b = 22.325(6), c = 20.425(7) Angstrom, beta = 91.78(2)degrees, V = 7528(3) Angstrom(3), Z = 2, and R1(wR2) = 0.0397(0.0773). The compound 1 exhibits a novel organic-inorganic sandwich-type structure, in which the crown ether-sodium complexes are coordinated to the terminal oxygen atoms of W6O192-. In compound 2, all Na+ ions are thoroughly enveloped into the organic moieties of crown ether and DMF molecules and are connected with the 'naked' polyanions W10O324- via the electrostatic attraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, [C12H24O6][H3PMo12O40]. 22H(2)O, was synthesized by the self-assembly of 18-crown-6 (abbreviated as C12H24O6 or 18C6) and H3PMo12O40 in the mixed solvent of CH3OH and CH3CN, and was characterized by IR, H-1 NMR and Xray diffraction for the first time. Crystal data: Triclinic, P (1) over bar, a = 13.428(3) Angstrom, b = 13.557(3)A, c = 14.642(3) Angstrom, a = 105.39(3)degrees, beta = 90.06(3)degrees, gamma = 119.56(5)degrees, V = 2207.5(8) Angstrom(3), Z = 1, R1 = 0.0719, wR2 = 0.1990. It has a disordered alpha-Keggin PMo12O403- anion, which contains the strong alternating short (mean 1.844 Angstrom) and long (mean 1.958 Angstrom) Mo-O-Mo bonds. In the unit cell, crown ethers and molybdophosphates are alternatively arranged in good order along c-axis. An oxonium ion is located at the center of a crown ether molecule., Oxonium ion interacts with 18C6 by the means of hydrogen bonds (mean 2.7771 Angstrom), which are electrostatic or resonant. The observations show the existence of [H3O(C12H24O6)](+) (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium ion transfer across micro-water/1,2-dichloroethane (DCE) interface facilitated by a novel ionophore, terminal-vinyl liquid crystal crown ether (LCCE) was studied by cyclic voltammetry. LCCEs have potential applications because of their physicochemical properties and the utilization of crown ethers as selective ionophoric units in other functionalized compounds are interesting. Host-guest-type behavior for such compounds in the liquid-crystalline state is studied. The experimental results suggest that the transfer of the sodium ion facilitated by LCCE was controlled by diffusion of LCCE from bulk solution of DCE to the interface. The diffusion coefficient of LCCE in DCE was calculated to be equal to (3.62 +/- 0.20) x 10(-6) cm(2)/s. Steady-state voltammograms are due to sodium ion transfer facilitated by the formation of 1: 1 metal (M)-LCCE complex at the interface and the mechanism tends to be transfer by interfacial complexation or dissociation (TIC or TID). The stability constant of the complex formed was determined to be log beta(o) = 5.5 in DCE phase. The influence of parameters such as concentration of sodium ion and concentration of LCCE on the sodium ion transfer was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sodium ion transfer across the micro-water/1,2-dichloroethane interface facilitated by a novel ionophore, liquid crystal crown ether was studied systematically. The sodium ion transfer facilitated by LCCE is controlled by diffusion studied by cyclic voltammetry. The diffusion coefficient of LCCE in 1,2-dichloroethane was calculated to be equal to (2.61 +/- 0.12) X 10(-6) cm(2)/s and the stability constant of the complex between Na+ and LCCE was determined as lg beta (o) = 5.7 in 1,2-dichloroethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solvent, dimethylformamide (DMF), and the traditional solvent, 1,4-butanediol, were used to prepare single crystals of nylon-10,10 from a dilute solution. The lamellae grown from DMF inhabited a more perfect structure and regular shape than those crystals crystallized from traditional solvents such as 1,4-butanediol and glycerin. These thin and perfect lamellar crystals demonstrated patterns of variation in spacing different from those of melt-crystallized spherulites on heating. Specifically, the two main spacings slightly separated rather than continuously approaching each other when the temperature was greater than 180 degreesC. This is a novel phenomenon observed in nylons. Nevertheless, the usual pattern of change in spacing was observed during the cooling process. These lamellar crystals showed more compact spacing of the (002) and (010/100) planes than spherulites at room temperature. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[La(NO3)(3)(OH2)(2)(phen)]. 15-crown-5 is hexagonal, P6(5), with a = 10.955(2), c = 43.769(9) Angstrom, and D-calc = 1.668 g cm(-3) for Z = 6. In the complex, two nitrogen atoms (from phen) and eight oxygen atoms (six from three bidentate nitrate anions and two from water molecules) are coordinated to the central La(III) ion, forming a coordination polyhedron which is approximately a bicapped square antiprism. The coordinated water molecules donate hydrogen bonds to the oxygen atoms of the crown ether, forming polymeric hydrogen bonded chains which wrap helically along the unit cell direction c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaCl3(15-crown-5), I was prepared by the reaction of LaCl(3)nH(2)O with 15-crown-5 and bipy (2,2'-bipyridyl). [LaCl2(phen)(H2O)(2)(mu-Cl)](2) .(15-crown-5). MeCN, II, was crystallized from a mixture of LaC1(3) . nH(2)O, phen (1,10-phenanthroline) and 15-crown-5 in MeOH/MeCN, Crystal structures of these two complexes have been determined by X-ray methods. The La(III) ion in I is coordinated by three Cl anions and five oxygen atoms of a crown ether. The two metal ions in II are bridged by two Cl anions and the crown ligand is hydrogen-bonded to the coordinated water molecules to form polymeric... crown/cation/cation/crown... chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[La(NO3)(3)(OH2)(2)(OHMe)(bipy).15-crown-5 is monoclinic, P2(1)/n, with a = 11.239(6), b = 19.302(7), c = 14.458(8) Angstrom, beta = 92.47(5)degrees, and D-calc = 1.63 g cm(-3) for Z = 4. In the complex, two nitrogen atoms (from bipy) and nine oxygen atom

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of Ln(NO3)(3)(Ln = Eu,Lu) complexes with 16-crown-5 are reported. In [Eu(NO3)(2)(CH3CN)(16-crown-5)][Eu(NO3)(4)(H2O)2].1/2(16-crown-5) one Eu-III ion is coordinated to two bidentate nitrate ions, one acetonitrile molecule and five o

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title complex was prepared by reacting Yb(NO3)3 (12-crown-4) with 1, 10-phenanthiroline (hereafter phen) in acetone. It crystallized in the triclinic space group P1BAR with a = 10.095(5), b = 17.415(4), c = 8.710(2) angstrom; alpha = 92.45(2), beta = 115.83(3), gamma = 74.08(3)degrees and D(c), = 1.85 g cm-3; Z = 2. The metal ion in this complex is nine-coordinated to three bidentate nitrate ions, two nitrogen atoms of a phen and a water molecule. The crown ligand is hydrogen bonded to the coordination water molecule. The symmetry change of the crown ether is also discussed.