275 resultados para Crotalaria retusa
Resumo:
Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex 1), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50 = 62.06 mu M) through a non-competitive type of inhibition (K-I = 8.1 mu M). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The persistence of straw, as well as the dynamics of nutrients release of it, are important aspects to consider in the choice of plants for composition of crop rotations in a no tillage system. Thus, the objective of this work was to evaluate the decomposition rate and macronutrients and silicon (Si) release from sunn hemp (Crotalaria juncea L.) phytomass, as a function of management, with and without fragmentation. A randomized blocks design, with four replications, in a factorial 2x6, constituted by two aboveground phytomass management after 75 days after emergence (with and without mechanical fragmentation) and six sampling times (0, 18, 32, 46, 74 and 91 days after management (DAM)), were evaluated the decomposition rate and nutrient release from sunn hemp biomass. The mechanical fragmentation of sunn hemp straw did not change the decomposition and macronutrients release. The maximum release rates occurred 0-18 DAM. Potassium is the most rapidly available nutrient, while the silicon is more slowly released to the ground. Over time there has been increasing Si content in the straw.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A field experiment was conducted with chamomile (Chamomilla recutita [L.] Rauschert), in an area of the Olericulture and Medicinal Plants of the Horticulture Department at UNESP - Jaboticabal Campus, with the aim to evaluate the influence of organic and chemical fertilization on the yield of flowers, and content and composition of the essential oil of chamomile. The experimental design for the yield of flowers consisted of randomized blocks with 7 treatments and 4 replications, for the analysis of the contents and composition of the oil, the completely randomized block was used and for analysis of the correlation between harvesting and treatment, the split-plot design into randomized blocks was used. The treatments tested were: no fertilization, green manure (Mucuna aterrima + Crotalaria spectabilis), green manure (plant cocktail), organic fertilizer (farmyard manure), N as urea, N as ammonium sulphate, NPK with N supplement as ammonium sulphate. There was no influence of the treatments on the yield of flowers nor on the essential oil content; on the other hand both characteristics did show significant differences in harvesting times (Tukey 5%). The main yield was 885.90 kg/ha dry flowers and the mean oil content was 0,86%. The green manure treatment (M. aterrima + C. spectabilis) showed a higher percentage of chamazulene content, with a highly significant difference in harvesting times (Tukey 1%). The a-bisabolol percentages did not evidence significant differences between treatments. However, among harvesting times, there was a variation. A negative correlation was verified between the chamazulene and abisabolol percentages; the first increasing - from 21.02 to 36.17% - and the latter decreasing - from 14.12 to 8.72 % - from the first to the sixth harvest. The observed mean content of chamazulene was 14.64 % and a-bisabolol was 16.72 %.
Resumo:
The objective of this research was to study the porosity, bulk density and retention of water of an Oxisol, located in the Northwestern region of Sn̄o Paulo state, Brazil. The soil was cultivated with Citrus sp., to which green manure was applied between rows for three years. Each of six species of green manure crops (Crotalaria juncea L., Mucuna deeringiana Steph. & Bart., Canavalia ensiformis L. DC., Cajanus cajan L., Lablab purpureum L. and Ricinus communis L.) were seeded for three years (1995, 1996 and 1997) between Citrus rows, plus a treatment with a mix of all six species and a control (natural regrowth af vegetation). The experimental design was a randomized complete block design, with four replications for each of the eight treatments. Water retention, microporosity, macroporosity, total porosity and bulk density were analyzed in the beginning (1995) and end (1997) of the experiment, at three depth ranges (0-0.10; 0.10-0.20 and 0.20-0.40m). We concluded that there were statistically significant differences for bulk density, macroporosity, total porosity and retention of water among the different soil depth ranges; there were no significant differences among treatments though.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A field experiment was carried out in the Lageado Experimental Farm belonging to the São Paulo State University - UNESP, Campus of Botucatu, SP, in a distrophic Nitosoil in 1997/98. The objective was to compare the effects of magnesium termophosphate; termophosphate + lime; termophosphate + phosphogypsum + sugarcane vinnace application on the chemical characteristics of the soil and on the corn (Zea mays L.) yield cultivated in no-tillage and conventional tillage systems. The Crotalaria juncea was cultivated as mulch-producing to make possible the establishment of the tillage systems. The mean modifications in the soil fertility were due to aplication of the magnesium termophosphate. The differences between the two tillage systems, related to crop productivity, were associated to the smaller N content in the corn leaf in the no-tillage system.
Resumo:
Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.
Resumo:
The high rate of mineralization of organic matter on savannah soils, which is reached fi ve times faster than in temperate regions, leads us to the challenge of electing the best system of management that maintains and/or increase it in soil, guaranteeing its quality and sustainability. In this sense the present research aimed to study the effects of green, organic and mineral manure on the chemical properties on the chemical properties of an Oxisol, on Savannah area, cultivated with cotton (Gossypium hirsutum) under conventional tillage and no-tillage in the pasture fi eld (Brachiaria decumbens) for 20 years. The experimental design was a randomized block design with split plots. The main plots consisted of two treatments: conventional tillage and no-tillage, and the subplots of six treatments: control (no fertilizer), mineral fertilizer recommended for the crop, according to the soil chemical analysis, organic fertilizer (cattle manure - 20 t ha-1), organic fertilizer (cattle manure - 20 t ha-1) + 1/2mineral fertilization recommended according to the analysis of soil, green manure-1 (Crotalaria juncea) and green manure-2 (Pennisetum americanum). There were studied the following soil chemical properties: P, OM, pH, K, Ca, Mg, Al, Al + H, S, exchange capacity cations and base saturation. The soil samples for the analysis were performed on layers of 0,00-0,05 m, 0,05-0,10 and 0,10-0,20 m. Then it came the following conclusions: the fertilization interfere in soil chemical properties and the preparation did not interfere, the cattle manure and its association with the mineral fertilizer caused increasing level elements in the soil, Crotalaria juncea and Pennisetum americanum did not infl uence on soil chemical properties.
Resumo:
Culture options for the autumn-winter season are a major problem for production systems under low rainfall. The aim of this study was to evaluate the effect of the sowing season on dry matter yield, nutrient content of the shoot and soil covering percentage of coverage plants on the soil on the intercrop: grain sorghum, rattlepods, pearl millet brachiaria grass and an area with weeds (fallow). The experiment was conducted under field conditions on an Oxisol (Haplustox), clay texture, in Selvíria, Mato Grosso do Sul, Brazil. The experimental design was a randomized block design with eight replications, two sowing seasons and five coverage treatments. When the sorghum culture of the first sowing season reached the harvest stage, the dry matter yield on the other treatments was evaluated. Results showed that sowing in March results in higher dry mass yield and higher soil coverage percentage in the studied species. In the first sowing season, Brachiaria brizantha presents higher dry matter yield and macronutrients extraction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of cover crops in the soil causes changes in soil attributes influencing in a series of hydro-physical processes, which also modify the ability of soil to support the many activities that it is intended. Thus, the objective of this study was to evaluate the effect of cover crops on physical attributes of the soil. For this, an experiment was carried out on a Typic Hapludox, Jaboticabal State, Brazil, using cover crops of millet, sunn hemp, jack bean, lab-lab and black velvet bean in no-tillage and fallow area (spontaneous vegetation). The characteristics evaluated were the bulk density, macroporosity, microporosity, total porosity, aggregate stability, penetration resistance and organic matter. The incorporation of cover crops has proved to be a beneficial practice for the physical attributes of the soil, allowing a greater aggregate stability compared to fallow in the depth of 0-0.05 m. All cover crops presented values of soil penetration resistance below the critical value of 2 MPa.