974 resultados para Crop Forecasting System
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
La presente investigación se presenta como una alternativa para la reducción de la contaminación por nutrientes que produce el vertido de aguas residuales provenientes de núcleos urbanos que acaban en lagos, lagunas o embalses acelerando los procesos de eutrofización de los mismos. El objetivo de esta tesis es analizar la reducción de nutrientes, fundamentalmente nitrógeno, fósforo y potasio, del agua residual doméstica sometida a tratamiento a través de cultivos hidropónicos en un determinado periodo de tiempo, observando a su vez la evolución del cultivo seleccionado. El sistema se diseñó para funcionar en circuito cerrado con el agua residual circulando por entre las raíces de los vegetales estudiados. El cultivo seleccionado fue el “kenaf”, aunque después de mucho tiempo dedicado a la obtención de semillas de “kenaf “por diferentes proveedores, se decidió comenzar un primer ensayo utilizando plantas de aloe vera durante un periodo de un mes de verano. Se procedió a la colocación de plantas en un tubo conteniendo agua residual de una fosa séptica domiciliaria. La reducción de la DBO5 y la DQO fue notable aunque los resultados de la variación de nitratos y fosfatos no fueron concluyentes. Las altas temperaturas alcanzada en esas fechas por el agua circulante, finalmente imposibilitó la continuación del ensayo. Si bien esta primera puesta en marcha no resultó como se esperaba, aportó numerosa información para modificar el planteo del estudio, la forma de llevarlo a cabo y la puesta a punto de la propia instalación. El segundo ensayo se llevó a cabo en otoño con plantas de kenaf obtenidas del ensayo previo en suelo en una parcela piloto en los llanos de Villamartín, en la provincia de Cádiz. Antes de incorporar el agua al sistema hidropónico se analizaron todos los parámetros requeridos por la normativa española del agua para determinar su clasificación como agua residual doméstica. Luego se le dio seguimiento a la variación de los nutrientes, nitrógeno, fósforo y potasio a lo largo de varias semanas para evaluar la efectividad del tratamiento. Las plantas de kenaf continuaron su desarrollo utilizando las sustancias disueltas en el agua residual como única fuente de nutrientes disponible. This research is presented as an alternative to reduce the pollution that wastewater discharges from towns generate when they end in lakes, ponds and reservoirs, by accelerating the eutrophication processes. The objective of this thesis is to analyze the reduction of nutrients, mainly nitrogen, phosphorus and potassium, of domestic wastewater treated through hydroponics crops in a given period of time, noting at the same time the evolution of the selected crop. The system was designed to operate in closed circuit with the wastewater circulating through the roots of the studied plants. The selected crop was "kenaf", although after much time spent in obtaining seeds of "kenaf"by different vendors and the impossibility of achieving its germination; it was decided to start a first test using Aloe Vera plants for a period of one month in the summer. The plants were introduced in the holes of a tube containing septic wastewater. The BOD5 and COD reduction was remarkable though the results of the variation in nitrates and phosphates were inconclusive. High temperatures achieved in those dates by circulating water, eventually precluded the continuation of the test. Although this first implementation was not running as expected, it provided information to modify the proposal of the study, the way to carry it out and the development of the installation itself. The second test was conducted in autumn with kenaf plants obtained from the previous test in a pilot plant in the flatness of Villamartín, province of Cádiz. Before adding the water to the hydroponic system all the parameters required by the Spanish water regulations were analyzed to determine their classification as domestic waste water. Then, the variation of nutrients, nitrogen, phosphorus and potassium was tracking over several weeks to evaluate the effectiveness of the treatment. Kenaf plants continued its development using the substances dissolved in wastewater as sole source of nutrients available.
Resumo:
El Niño phenomenon is the leading mode of sea surface temperature interannual variability. It can affect weather patterns worldwide and therefore crop production. Crop models are useful tools for impact and predictability applications, allowing to obtain long time series of potential and attainable crop yield, unlike to available time series of observed crop yield for many countries. Using this tool, crop yield variability in a location of Iberia Peninsula (IP) has been previously studied, finding predictability from Pacific El Niño conditions. Nevertheless, the work has not been done for an extended area. The present work carries out an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The potential usefulness of this study is to apply the relationships found to improving crop forecasting in IP.
Resumo:
Preface.--Joekel, S.L. The crop mortgage system in Texas.--Haney, L.H. The need and possibility of coöperative rural credity in Texas.--Trenckmann, W. Cop̈erative agricultural credit.--Lamaster, C.E. Coöperative production by farmers.--Wythe, George. Coöperative marketing of fruit, truck and cotton, chiefly in Texas.--Voorhies, H.L. Farmers' educational and coöperative union in Texas.--Leonard, W.E. Seasonal industries and their labor supplies in Texas.--Leftwich, S.M. The farm labor problem.--Griffin, M.H. A study in highway administration with special reference to Texas needs.--Vaughan, F.L. Railway rates and services as affecting the Texas farmer.--Randolph, Ralph. The theory and practice of speculation on produce exchanges.--Donaldson, W.T. Farm tenure in Texas.--Dailey, B.E. Our system of taxation and its effect on the farmer.--Index.
Resumo:
The data set consists of maps of total velocity of surface currents in the Ibiza Channel, derived from HF radar measurements.
Resumo:
The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.
Resumo:
The proper use of management strategies, such as grazing intensity and nitrogen fertilization are primordial to the success of integrated crop-livestock system. Several studies have demonstrated the influence of grazing intensity and nitrogen fertilization on dynamics of forage production and nutrient cycling. However, most this researches studying these strategies in isolation and little is known about the interaction of these factors in the management of an integrated crop-livestock system. In this context, the aim of this study is to determine the best management strategy involving sward height and nitrogen fertilization, permitting greater forage production and improved efficiency in the use of nitrogen soil by a black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture in integrated crop-livestock system. The experiment was realized in Abelardo Luz – SC, in an area of 14 ha, where has been conducted an experiment in long term with integrated crop-livestock system under no-tillage since 2012. The experimental design is a randomized block design with three replications in a factorial design (2x2), the first factor was the grazing intensity (high and low), characterized by two sward height management (10 and 25 cm), and the second included the time factor application of N in the system: N applied on pasture (N-pasture) and N applied on the culture of grain (N-grain), at dose of 200 kg N ha stocking and variable stocking rate. The previous crop to pasture was corn. The nitrogen fertilization of pasture increased tiller density, forage density, participation of ryegrass ‘Barjumbo’ and percentage of ryegrass leaves in forage mass. Forage mass was less at low sward height on average, however the percentage of ryegrass ‘Barjumbo’ and rye leaves was greater and dead material was lower in this treatment. With nitrogen fertilization of pasture it was possible to double the amount of forage accumulated in periods with further development of ryegrass, furthermore, the total production of DM was increased in 38.4% and the shoot N concentration in 28.6%. When the nitrogen fertilization is applied in pasture, it is possible to keep black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture with an average sward height of 11 cm. The residual effect of N applied at corn was not sufficient to meet the nutritional needs of pasture and the forage production was affected by periods with N deficiency, while a single application of 200 kg N ha was sufficient to meet the N requirements throughout the forage accumulation period. The black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture is efficient in use and recovery of the nitrogen applied in both treatments of sward height.
Resumo:
We conducted a field experiment near Abelardo Luz, Santa Catarina, from October 2012 to April 2014, to evaluate the effect interaction of nitrogen fertilization and height of canopy over the N nutrition of corn subsequently grown to pasture. The data belonging to this thesis are related to the first two production cycles obtained in sorghum pasture (2012/2013), oat (2013) and corn crop (2013/2014). In the evaluation of forage sorghum and oat it was used the same experimental design, consisting of randomized complete block in a factorial arrangement (2 x 2) with three replications. The first factor was considered canopy height (Low and High) and the second factor was the fertilization of cover crop pasture (0 and 200 kg N.ha-1). In phase I and II, the combination of factors evaluators were prepared in the same experimental unit. For corn crop the design was a randomized complete block in a factorial design (2X2X4X6) with three replications. Factors considered in corn were: canopy height of pasture (Low and High), nitrogen application times (NG - nitrogen in the grains and NP - nitrogen in pasture), nitrogen fertilization in corn (0, 100, 200 and 300 kg N.ha-1) and time (46, 53, 60, 67, 76 and 103 days after sowing the maize). In phases I and II, in general the use of N in the pasture increased the productive potential of the pasture and animal management and canopy height has changed the dynamics of structural components and botanical pasture. In cold conditions for long periods and not acclimatized plants the adoption of high nitrogen fertilization and height high grazing pasture leave vulnerable to damage caused by the freezing of plants. The anticipation of nitrogen fertilization on pasture positively affects the corn crop by increasing the accumulated dry matter and N content in the plant. Nitrogen nutritional content of corn with the anticipation of fertilization in pasture is suitable for obtaining high crop production in integrated crop-livestock system. When used nitrogen only coverage in corn sufficiency level in the nitrogen nutrition is achieved with the use of 100 kg N.ha-1. With the use of 200 kg N ha -1 NG and NP no difference in nitrogen content and nitrogen nutrition index.
Resumo:
Dissertação de Mestrado, Engenharia e Gestão de Sistemas de Água, 23 de Junho de 2016, Universidade dos Açores.
Resumo:
Legumes are bee-pollinated, but to a different extent. The importance of the plant– pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergybetweenfoodproductionandpollinationservicesatfarmerfieldlevel.Twobasic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System.
Resumo:
Legumes are bee-pollinated, but to a different extent. The importance of the plant– pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergybetweenfoodproductionandpollinationservicesatfarmerfieldlevel.Twobasic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System.
Resumo:
The thesis has extensively investigated for the first time the statistical distributions of atmospheric surface variables and heat fluxes for the Mediterranean Sea. After retrieving a 30-year atmospheric analysis dataset, we have captured the spatial patterns of the probability distribution of the relevant atmospheric variables for ocean atmospheric forcing: wind components (U,V), wind amplitude, air temperature (T2M), dewpoint temperature (D2M) and mean sea-level pressure (MSL-P). The study reveals that a two-parameter PDF is not a good fit for T2M, D2M, MSL-P and wind components (U,V) and a three parameter skew-normal PDF is better suited. Such distribution captures properly the data asymmetric tails (skewness). After removing the large seasonal cycle, we show the quality of the fit and the geographic structure of the PDF parameters. It is found that the PDF parameters vary between different regions, in particular the shape (connected to the asymmetric tails) and the scale (connected to the spread of the distribution) parameters cluster around two or more values, probably connected to the different dynamics that produces the surface atmospheric fields in the Mediterranean basin. Moreover, using the atmospheric variables, we have computed the air-sea heat fluxes for a 20-years period and estimated the net heat budget over the Mediterranean Sea. Interestingly, the higher resolution analysis dataset provides a negative heat budget of –3 W/m2 which is within the acceptable range for the Mediterranean Sea heat budget closure. The lower resolution atmospheric reanalysis dataset(ERA5) does not satisfy the heat budget closure problem pointing out that a minimal resolution of the atmospheric forcing is crucial for the Mediterranean Sea dynamics. The PDF framework developed in this thesis will be the basis for a future ensemble forecasting system that will use the statistical distributions to create perturbations of the atmospheric ocean forcing.
Resumo:
A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach. the parameter gamma* = Delta H-amor/(Delta H-inter - Delta H-amor) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and Delta H-amor and Delta H-inter are the enthalpies for-lass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The gamma* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the gamma* parameter is applied in the ternary Al-Ni-Y system. The calculated gamma* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite sonic misfitting, the best glass formers are found quite close to the highest gamma* values, leading to the conclusion that this thermodynamic approach can lie extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys. (C) 2007 Elsevier B. V. All rights reserved.