1000 resultados para Counting >125 µm fraction
Resumo:
Modern planktonic foraminifera collected with a sediment trap and subfossil assemblages from surface sediments from Galway Mound in the Porcupine Seabight off southwestern Ireland, northeastern Atlantic, were studied to show recent assemblage variations. The sediment trap operated from April to August 2004 and covers the spring bloom and early summer conditions with sampling intervals of 8 days. Eleven different species were recorded. Glorotalia hirsuta, Turborotalita quinqueloba and Globigerinita glutinata appeared predominately in spring. Neogloboquadrina incompta, Globigerina bulloides and Globorotalia inflata were abundant in spring and summer. The highest foraminiferal tests flux occured in June. The faunal composition was similar to subfossil assemblages from surface sediments, but the species proportions were different. This was mainly affected by the subtropical G. hirsuta, which was frequent in 2004 and rare in surface sediment samples and in earlier plankton collections from the southern Porcupine Seabight that were performed during the 1990s. The weight of deposited foraminifera is mainly influenced by spring bloom as indicated by sea-surface chlorophyll-a data. The top three-ranked species, G. hirsuta, N. incompta and G. bulloides contributed 87 % to the foraminiferal carbonate flux at Galway Mound. Foraminiferal carbonate and shell flux as well as the shell size revealed variations, which are related to lunar periodicity. The data infer a lunar pacing of reproduction for the main species as well as for G. glutinata and G. inflata, which was not recorded before.
Resumo:
Benthic foraminifers from Site 652, Site 653 (Hole 653A), and Site 654 of Leg 107 (Tyrrhenian Sea, Western Mediterranean), which penetrated with more or less good recovery the Plio-Pleistocene stratigraphic interval, were studied in a total of 699 close-spaced samples. A total number of 269 species have been classified and their quantitative distribution in each sample is reported. The benthic foraminifers assemblage is more diversified in Site 654, less diversified in Site 652. Less than a half of the benthic foraminifers species listed from Plio-Pleistocene Italian land sections are present in the coeval deep-sea Tyrrhenian record, in which shallow water species are missing and Nodosarids are poorly represented. A very few species have comparable stratigraphic distribution in the three deep-sea sequences and in Italian land sections when compared against calcareous plankton biostratigraphy. In the same three sites, the first appearance levels of several species are younger and younger, and last appearance levels are earlier and earlier from Site 654 to Site 653 and Site 652. Five biostratigraphic events, biochronologically evaluated and occurring at the same level in the deepsea Tyrrhenian record and in several land sections, have been selected as zonal boundaries of the proposed benthic foraminifers biostratigraphic scheme. The Plio-Pleistocene interval has been subdivided into four biozones and one subzone, recognizable both in the deep-sea and land-based sequences. The Cibicidoides (?) italicus assemblage zone stretches from the base of the Pliocene to the extinction level of the zonal marker, biochronologically evaluated at 2.9 Ma. The Cibicidoides robertsonianus interval zone stretches from the Cibicidoides (?) italicus extinction level to the Pliocene Mediterranean FO of Gyroidinoides altiformis, evaluated at 2.4 Ma. The Gyroidinoides altiformis interval zone stretches from the Mediterranean Pliocene FO of the zonal marker to the appearance level of Articulina tubulosa, evaluated at 1.62 Ma. The Articulina tubulosa assemblage zone stretches from the appearance level of the zonal marker to the Recent. In the Articulina tubulosa biozone, the Hyalinea baltica subzone is proposed. The appearance level of Hyalinea baltica is evaluated at 1.35 Ma, well above the Plio-Pleistocene boundary as defined in the Vrica stratotype section.
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
We studied the biological response to orbital forcing in marine Upper Albian sediments recovered from the 245 m-long Kirchrode I borehole in the Lower Saxony basin in northwestern Germany. Results from quantitative analysis of planktonic and benthic foraminifera, of calcareous nannofossils, and radiolaria were used for this study. Spectral analysis in the depth domain indicates for the high sedimentation rate part of the Upper Albian dominant periods with wavelengths of 10±13 m, 5±6 m, and 2±3 m, which we interpret to represent the biological response to orbital forcing in the Milankovitch frequency bands eccentricity, obliquity, and precession, respectively. In addition, a low amplitude 40±50 m cycle was found, which would represent the long-term eccentricity variation of roughly 400 ka. Microfossil cyclicity does not change significantly within the whole core indicating sedimentation rates of 11±12 cm/ka on an average, with variations between 3.5 and 13 ka. Microfossils show greater variability in their abundance changes than the physical and chemical parameters and also greater power in the higher-frequency bands (obliquity and precession). While most of the planktonic foraminifer species studied are dominated by variations in the obliquity, most benthic foraminifer species show an additional strong influence of precession. These differences in the cyclicity of the abundance changes are interpreted as reflecting a stronger influence of low latitude water in the deep waters of the Late Albian Lower Saxony basin than in the shallow waters. This basin was part of a wide, 'Boreal' epicontinental sea, which was connected to the Tethys to the south via the Polish strait and via the Paris basin, and which was connected with the North Atlantic and Arctic to the north. In analogy to results from analysis of data from the Late Neogene, strong effects of precession interpreted as being more characteristic for changes/influences triggered in the low latitudes and those of obliquity to be more characteristic for influences from the high latitudes. The presence of a relatively strong eccentricity cycle, not only in the compound parameters, but also in the abundance changes of single species during the Late Albian means that there must have been a non-linear response to orbital forcing and internal feedbacks.
Resumo:
Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.
Resumo:
High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.
Resumo:
Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.
Resumo:
The relationship between the distribution of benthic foraminifera and sediment type and depositional environment in the Arabian Sea is discussed. The benthic foraminiferal fauna were sampled in nineteen Recent surface sediment samples, and geochemical variables of the sediment of the same samples were measured. The water depths for the box core samples varies from 440 to 4040 m. A total of 103 species and six species-complexes were identified. The geochemical properties were found to correspond well to the sediment type and depositional environment and six different sediment/depositional environment types could be distinguished. Analysis of the benthic foraminiferal fauna reveals specific faunal assemblages that are closely related to these sediment/depositional environment types.
Resumo:
A mechanism had been recently proposed to show how an impact event can trigger a geomagnetic polarity reversal by means of rapid climate cooling. We test the proposed mechanism by examining the record from two high sedimentation rate (8-11 cm/kyr) deep-sea sediment cores (ODP Sites 767 and 769) from marginal seas of the Indonesian archipelago, which record the Australasian impact with well-defined microtektite layers, the Brunhes-Matuyama polarity reversal with strong and stable remanent magnetizations, and global climate with oxygen isotope variations in planktonic foraminifera. Both ODP cores show the impact to have preceded the reversal of magnetic field directions by about 12 kyr. Both records indicate that the field intensity was increasing near the time of impact and that it continued to increase for about 4 kyr afterwards. Furthermore, the oxygen isotope record available from sediments at ODP Site 769 shows no indication of discernible climate cooling following the impact: the microtektite event occurred in the later part of glacial Stage 20 and was followed by a smooth warming trend to interglacial Stage 19. Thus the detailed chronology does not support the previously proposed model which would predict that a decrease in geomagnetic field intensity resulted from a minor glaciation following the impact event. We conclude that the evidence for a causal link between impacts and geomagnetic reversals remains insufficient to demonstrate a physical connection.
Resumo:
Benthic foraminifers were studied from lower Paleocene through upper Oligocene sections from Sites 747 and 748. The composition of the benthic foraminifer species suggests a middle to lower bathyal (600-2000 m) paleodepth during the Neogene and a probable upper abyssal (2000-3000 m) paleodepth during the Paleocene at Site 747. Site 748 is thought to have remained at middle to lower bathyal paleodepths throughout the Cenozoic. Principal component analysis distinguished four major benthic foraminifer assemblages: (1) a Paleocene Stensioina beccariiformis assemblage at Sites 747 and 748, (2) an early Eocene Nuttallides truempyi assemblage at lower bathyal Site 747, (3) an early through middle Eocene Stilostomella-Lenticulina assemblage at middle bathyal Site 748, and (4) a latest Eocene through Oligocene Cibicidoides-Astrononion pusillum assemblage at both sites. Major benthic foraminifer changes, as indicated by the principal components and first and last appearances, occurred at or close to the Paleocene/Eocene boundary, and in the late Eocene close to the middle/late Eocene boundary.
Resumo:
A high-resolution study of palaeoceanographic changes off North Iceland during the time period 8600-5200 cal year BP is based on benthic and planktonic foraminiferal assemblages. The core material (MD99-2275) was obtained from about 440 m water depth on the eastern part of the North Icelandic shelf. Changes in the faunal composition are interpreted to be mainly caused by variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current, which have been shown to be linked to the climatic changes in the North Atlantic region. Environmental proxies at that site are particularly sensitive to palaeoceanographic changes due to its position close to the marine Polar Front. Benthic assemblages show that relatively cold conditions prevailed at the base of the record. An increase in the influence of Atlantic water masses at the sea floor is seen at around 8400 cal year BP, whereas the surface waters were relatively warm already at 8600 cal year BP. The warming was interrupted by a cold event at around 8100-8000 cal year BP, registered both in the bottom and surface waters and correlated with the so-called 8.2 kyr cooling event. Both the benthic and the planktonic faunal compositions indicate that the Irminger Current had maximum influence in the area between 8000 and about 7300 cal year BP, followed by a gradually decreasing influence through the remaining part of the studied time interval. It is suggested that the contribution of Atlantic water masses from the east and north-east to the Arctic Surface waters off North Iceland increased after around 7000 cal year BP, and that this was further intensified after 6200 cal year BP. At present, the Arctic Surface Water north of Iceland consists of Polar waters, intermittently with direct influence from the East Greenland Current, mixed with Atlantic waters derived from the eastern part of the Nordic Seas. A comparison of the mean values of selected environmental proxies in the interval 8600-5200 cal year BP with the upper part of the same core shows that the water masses north of Iceland were considerably warmer during the Holocene thermal maximum than during the last 2000 cal year. In general, results from core MD99-2275 are in accordance with other marine records from the North Icelandic shelf and the northern North Atlantic region, although a detailed comparison on a centennial time scale is hampered by problems with spatial as well as temporal changes in the marine reservoir ages in the region.