989 resultados para Coronary arteries - Development
Resumo:
Three-dimensional free-breathing coronary magnetic resonance angiography was performed in eight healthy volunteers with use of real-time navigator technology. Images acquired with the navigator localized at the right hemidiaphragm and at the left ventricle were objectively compared. The diaphragmatic navigator was found to be superior for vessel delineation of middle to distal portions of the coronary arteries.
Resumo:
Two-dimensional (2D)-breath-hold coronary magnetic resonance angiography (MRA) has been shown to be a fast and reliable method to depict the proximal coronary arteries. Recent developments, however, allow for free-breathing navigator gated and navigator corrected three-dimensional (3D) coronary MRA. These 3D approaches have potential for improved signal-to-noise ratio (SNR) and allow for the acquisition of adjacent thin slices without the misregistration problems known from 2D approaches. Still, a major impediment of a 3D acquisition is the increased scan time. The purpose of this study was the implementation of a free-breathing navigator gated and corrected ultra-fast 3D coronary MRA technique, which allows for scan times of less than 5 minutes. Twelve healthy adult subjects were examined in the supine position using a navigator gated and corrected ECG triggered ultra-fast 3D interleaved gradient echo planar imaging sequence (TFE-EPI). A 3D slab, consisting of 20 slices with a reconstructed slice thickness of 1.5 mm, was acquired with free-breathing. The diastolic TFE-EPI acquisition block was preceded by a T2prep pre-pulse, a diaphragmatic navigator pulse, and a fat suppression pre-pulse. With a TR of 19 ms and an effective TE of 5.4 ms, the duration of the data acquisition window duration was 38 ms. The in-plane spatial resolution was 1.0-1.3 mm*1.5-1.9 mm. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and right coronary artery (RCA) could be visualized with an average scan time for the entire 3D-volume data set of 2:57 +/- 0:51 minutes. Average contiguous vessel length visualized was 53 +/- 11 mm (range: 42 to 75 mm) for the LAD and 84 +/- 14 mm (range: 62 to 112 mm) for the RCA. Contrast-to-noise between coronary blood and myocardium was 5.0 +/- 2.3 for the LM/LAD and 8.0 +/- 2.9 for the RCA, resulting in an excellent suppression of myocardium. We present a new approach for free-breathing 3D coronary MRA, which allows for scan times superior to corresponding 2D coronary MRA approaches, and which takes advantage of the enhanced SNR of 3D acquisitions and the post-processing benefits of thin adjacent slices. The robust image quality and the short average scanning time suggest that this approach may be useful for screening the major coronary arteries or identification of anomalous coronary arteries. J. Magn. Reson. Imaging 1999;10:821-825.
Resumo:
Obstructive disease of the large coronary arteries is the prominent cause for angina pectoris. However, angina may also occur in the absence of significant coronary atherosclerosis or coronary artery spasm, especially in women. Myocardial ischaemia in these patients is often associated with abnormalities of the coronary microcirculation and may thus represent a manifestation of coronary microvascular disease (CMD). Elucidation of the role of the microvasculature in the genesis of myocardial ischaemia and cardiac damage-in the presence or absence of obstructive coronary atherosclerosis-will certainly result in more rational diagnostic and therapeutic interventions for patients with ischaemic heart disease. Specifically targeted research based on improved assessment modalities is needed to improve the diagnosis of CMD and to translate current molecular, cellular, and physiological knowledge into new therapeutic options.
Resumo:
The aim of this study was to compare postmortem angiography-based, autopsy-based and histology-based diagnoses of acute coronary thrombosis in a series of medicolegal cases that underwent postmortem angiographies according to multiphase CT-angiography protocol. Our study included 150 medicolegal cases. All cases underwent native CT-scan, postmortem angiography, complete conventional autopsy and histological examination of the main organs and coronary arteries. In 10 out of the 150 investigated cases, postmortem angiographies revealed coronary arterial luminal filling defects and the absence of collateral vessels, suggesting acute coronary thromboses. Radiological findings were confirmed by autopsy and histological examinations in all cases. In 40 out of 150 cases, angiograms revealed complete or incomplete coronary arterial luminal filling defects and the presence of collateral vessels. Histological examinations did not reveal free-floating or non-adherent thrombi in the coronary arteries in any of these cases. Though postmortem angiography examination has not been well-established for the diagnosis of acute coronary thrombosis, luminal filling defects in coronary arteries suggesting acute thromboses can be observed through angiography and subsequently confirmed by autopsy and histological examinations.
Resumo:
PURPOSE: To compare 3 different flow targeted magnetization preparation strategies for coronary MR angiography (cMRA), which allow selective visualization of the vessel lumen. MATERIAL AND METHODS: The right coronary artery of 10 healthy subjects was investigated on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Healthcare, Best, NL). A navigator-gated and ECG-triggered 3D radial steady-state free-precession (SSFP) cMRA sequence with 3 different magnetization preparation schemes was performed referred to as projection SSFP (selective labeling of the aorta, subtraction of 2 data sets), LoReIn SSFP (double-inversion preparation, selective labeling of the aorta, 1 data set), and inflow SSFP (inversion preparation, selective labeling of the coronary artery, 1 data set). Signal-to-noise ratio (SNR) of the coronary artery and aorta, contrast-to-noise ratio (CNR) between the coronary artery and epicardial fat, vessel length and vessel sharpness were analyzed. RESULTS: All cMRA sequences were successfully obtained in all subjects. Both projection SSFP and LoReIn SSFP allowed for selective visualization of the coronary arteries with excellent background suppression. Scan time was doubled in projection SSFP because of the need for subtraction of 2 data sets. In inflow SSFP, background suppression was limited to the tissue included in the inversion volume. Projection SSFP (SNR(coro): 25.6 +/- 12.1; SNR(ao): 26.1 +/- 16.8; CNR(coro-fat): 22.0 +/- 11.7) and inflow SSFP (SNR(coro): 27.9 +/- 5.4; SNR(ao): 37.4 +/- 9.2; CNR(coro-fat): 24.9 +/- 4.8) yielded significantly increased SNR and CNR compared with LoReIn SSFP (SNR(coro): 12.3 +/- 5.4; SNR(ao): 11.8 +/- 5.8; CNR(coro-fat): 9.8 +/- 5.5; P < 0.05 for both). Longest visible vessel length was found with projection SSFP (79.5 mm +/- 18.9; P < 0.05 vs. LoReIn) whereas vessel sharpness was best in inflow SSFP (68.2% +/- 4.5%; P < 0.05 vs. LoReIn). Consistently good image quality was achieved using inflow SSFP likely because of the simple planning procedure and short scanning time. CONCLUSION: Three flow targeted cMRA approaches are presented, which provide selective visualization of the coronary vessel lumen and in addition blood flow information without the need of contrast agent administration. Inflow SSFP yielded highest SNR, CNR and vessel sharpness and may prove useful as a fast and efficient approach for assessing proximal and mid vessel coronary blood flow, whereas requiring less planning skills than projection SSFP or LoReIn SSFP.
Resumo:
BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.
Resumo:
During conventional x-ray coronary angiography, multiple projections of the coronary arteries are acquired to define coronary anatomy precisely. Due to time constraints, coronary magnetic resonance angiography (MRA) usually provides only one or two views of the major coronary vessels. A coronary MRA approach that allowed for reconstruction of arbitrary isotropic orientations might therefore be desirable. The purpose of the study was to develop a three-dimensional (3D) coronary MRA technique with isotropic image resolution in a relatively short scanning time that allows for reconstruction of arbitrary views of the coronary arteries without constraints given by anisotropic voxel size. Eight healthy adult subjects were examined using a real-time navigator-gated and corrected free-breathing interleaved echoplanar (TFE-EPI) 3D-MRA sequence. Two 3D datasets were acquired for the left and right coronary systems in each subject, one with anisotropic (1.0 x 1.5 x 3.0 mm, 10 slices) and one with "near" isotropic (1.0 x 1.5 x 1.0 mm, 30 slices) image resolution. All other imaging parameters were maintained. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and the right coronary artery (RCA) were visualized. Objective assessment of coronary vessel sharpness was similar (41% +/- 5% vs. 42% +/- 5%; P = NS) between in-plane and through-plane views with "isotropic" voxel size but differed (32% +/- 7% vs. 23% +/- 4%; P < 0.001) with nonisotropic voxel size. In reconstructed views oriented in the through-plane direction, the vessel border was 86% more defined (P < 0.01) for isotropic compared with anisotropic images. A smaller (30%; P < 0.001) improvement was seen for in-plane reconstructions. Vessel diameter measurements were view independent (2.81 +/- 0.45 mm vs. 2.66 +/- 0.52 mm; P = NS) for isotropic, but differed (2.71 +/- 0.51 mm vs. 3.30 +/- 0.38 mm; P < 0.001) between anisotropic views. Average scanning time was 2:31 +/- 0:57 minutes for anisotropic and 7:11 +/- 3:02 minutes for isotropic image resolution (P < 0.001). We present a new approach for "near" isotropic 3D coronary artery imaging, which allows for reconstruction of arbitrary views of the coronary arteries. The good delineation of the coronary arteries in all views suggests that isotropic 3D coronary MRA might be a preferred technique for the assessment of coronary disease, although at the expense of prolonged scan times. Comparative studies with conventional x-ray angiography are needed to investigate the clinical utility of the isotropic strategy.
Resumo:
PURPOSE: In the present study, the impact of the two different fat suppression techniques was investigated for free breathing 3D spiral coronary magnetic resonance angiography (MRA). As the coronary arteries are embedded in epicardial fat and are adjacent to myocardial tissue, magnetization preparation such as T(2)-preparation and fat suppression is essential for coronary discrimination. MATERIALS AND METHODS: Fat-signal suppression in three-dimensional (3D) thin- slab coronary MRA based on a spiral k-space data acquisition can either be achieved by signal pre-saturation using a spectrally selective inversion recovery pre-pulse or by spectral-spatial excitation. In the present study, the performance of the two different approaches was studied in healthy subjects. RESULTS: No significant objective or subjective difference was found between the two fat suppression approaches. CONCLUSION: Spectral pre-saturation seems preferred for coronary MRA applications due to the ease of implementation and the shorter cardiac acquisition window.
Resumo:
BACKGROUND: In spite of robust knowledge about underlying ischemic myocardial damage, acute coronary syndromes (ACS) with culprit-free angiograms raise diagnostic concerns. The present study aimed to evaluate the additional value of cardiac magnetic resonance (CMR) over commonly available non-CMR standard tests, for the differentiation of myocardial injury in patients with ACS and non-obstructed coronary arteries. MATERIAL/METHODS: Patients with ACS, elevated hs-TnT, and a culprit-free angiogram were prospectively enrolled into the study between January 2009 and July 2013. After initial evaluation with standard tests (ECG, echocardiography, hs-TnT) and provisional exclusion of acute myocardial infarction (AMI) in coronary angiogram, patients were referred for CMR with the suspicion of myocarditis or Takotsubo cardiomyopathy (TTC). According to the result of CMR, patients were reclassified as having myocarditis, AMI, TTC, or non-injured myocardium as assessed by late gadolinium enhancement. RESULTS: Out of 5110 patients admitted with ACS, 75 had normal coronary angiograms and entered the study; 69 of them (92%) were suspected for myocarditis and 6 (8%) for TTC. After CMR, 49 patients were finally diagnosed with myocarditis (65%), 3 with TTC (4%), 7 with AMI (9%), and 16 (21%) with non-injured myocardium. The provisional diagnosis was changed or excluded in 23 patients (31%), with a 9% rate of unrecognized AMI. CONCLUSIONS: The study results suggest that the evaluation of patients with ACS and culprit-free angiogram should be complemented by a CMR examination, if available, because the initial work-up with non-CMR tests leads to a significant proportion of misdiagnosed AMI.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Local re-inversion coronary MR angiography: arterial spin-labeling without the need for subtraction.
Resumo:
PURPOSE: To implement a double-inversion bright-blood coronary MR angiography sequence using a cylindrical re-inversion prepulse for selective visualization of the coronary arteries. MATERIALS AND METHODS: Local re-inversion bright-blood magnetization preparation was implemented using a nonselective inversion followed by a cylindrical aortic re-inversion prepulse. After an inversion delay that allows for in-flow of the labeled blood-pool into the coronary arteries, three-dimensional radial steady-state free-precession (SSFP) imaging (repetition/echo time, 7.2/3.6 ms; flip angle, 120 degrees, 16 profiles per RR interval; field of view, 360 mm; matrix, 512, twelve 3-mm slices) is performed. Coronary MR angiography was performed in three healthy volunteers and in one patient on a commercial 1.5 Tesla whole-body MR System. RESULTS: In all subjects, coronary arteries were selectively visualized with positive contrast. In addition, a middle-grade stenosis of the proximal right coronary artery was seen in one patient. CONCLUSION: A novel T1 contrast-enhancement strategy is presented for selective visualization of the coronary arteries without extrinsic contrast medium application. In comparison to former arterial spin-labeling schemes, the proposed magnetization preparation obviates the need for a second data set and subtraction.
Resumo:
Coronary artery fistulae represent the most frequent congenital anomalies of the coronary arteries, but remain a relatively uncommon clinical problem. Moreover, multiple fistulae originating from both the left and the right coronary arteries and draining into the left ventricular chamber are a rare condition. Due to the low prevalence of these anomalies, the appropriate management of patients with symptomatic coronary artery fistulae is controversial. Transcatheter closure approaches have emerged as a less invasive strategy and are nowadays considered a valuable alternative to surgical correction with similar effectiveness, morbidity and mortality. The percutaneous management, however, is mainly limited by the individual anatomic features of the fistula and an appropriate patient's selection is considered as a key determining factor to achieve complete occlusion. Thus, success rates of transcatheter closure techniques reported in the literature are extremely variable and highly dependent upon the nature of the follow up, which, at present, is not standardized. The optimal management of symptomatic patients with multiple coronary artery fistulae still remains a challenging problem and has been traditionally considered as an indication for cardiac surgery. We report here the case of a patient with double bilateral congenital coronary artery fistulae arising from both the left and right coronary arteries and draining individually into the left ventricular chamber. This patient underwent successful transcatheter anterograde closure of both fistulae using a microcoil embolization technique.
Resumo:
Seven tesla (T) MR imaging is potentially promising for the morphologic evaluation of coronary arteries because of the increased signal-to-noise ratio compared to lower field strengths, in turn allowing improved spatial resolution, improved temporal resolution, or reduced scanning times. However, there are a large number of technical challenges, including the commercial 7 T systems not being equipped with homogeneous body radiofrequency coils, conservative specific absorption rate constraints, and magnified sample-induced amplitude of radiofrequency field inhomogeneity. In the present study, an initial attempt was made to address these challenges and to implement coronary MR angiography at 7 T. A single-element radiofrequency transmit and receive coil was designed and a 7 T specific imaging protocol was implemented, including significant changes in scout scanning, contrast generation, and navigator geometry compared to current protocols at 3 T. With this methodology, the first human coronary MR images were successfully obtained at 7 T, with both qualitative and quantitative findings being presented.