925 resultados para Convex Duality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of convex extendability is introduced to answer the problem of finding the smallest distance convex simple graph containing a given tree. A problem of similar type with respect to minimal path convexity is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convex combination is a mathematic approach to keep the advantages of its component algorithms for better performance. In this paper, we employ convex combination in the blind equalization to achieve better blind equalization. By combining the blind constant modulus algorithm (CMA) and decision directed algorithm, the combinative blind equalization (CBE) algorithm can retain the advantages from both. Furthermore, the convergence speed of the CBE algorithm is faster than both of its component equalizers. Simulation results are also given to verify the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the scattering of a time-harmonic acoustic incident plane wave by a sound soft convex curvilinear polygon with Lipschitz boundary. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency of the incident wave. Here we propose a novel Galerkin boundary element method with a hybrid approximation space, consisting of the products of plane wave basis functions with piecewise polynomials supported on several overlapping meshes; a uniform mesh on illuminated sides, and graded meshes refined towards the corners of the polygon on illuminated and shadow sides. Numerical experiments suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy need only grow logarithmically as the frequency of the incident wave increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A characterization of observability for linear time-varying descriptor systemsE(t)x(t)+F(t)x(t)=B(t)u(t), y(t)=C(t)x(t) was recently developed. NeitherE norC were required to have constant rank. This paper defines a dual system, and a type of controllability so that observability of the original system is equivalent to controllability of the dual system. Criteria for observability and controllability are given in terms of arrays of derivatives of the original coefficients. In addition, the duality results of this paper lead to an improvement on a previous fundamental structure result for solvable systems of the formE(t)x(t)+F(t)x(t)=f(tt).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.