966 resultados para Controller design
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
A person with a moderate or severe motor disability will often use specialised or adapted tools to assist their interaction with a general environment. Such tools can assist with the movement of a person's arms so as to facilitate manipulation, can provide postural supports, or interface to computers, wheelchairs or similar assistive technologies. Designing such devices with programmable stiffness and damping may offer a better means for the person to have effective control of their surroundings. This paper addresses the possibility of designing some assistive technologies using impedance elements that can adapt to the user and the circumstances. Two impedance elements are proposed. The first, based on magnetic particle brakes, allows control of the damping coefficient in a passive element. The second, based on detuning the P-D controller in a servo-motor mechanism, allows control of both stiffness and damping. Such a mechanical impedance can be modulated to the conditions imposed by the task in hand. The limits of linear theory are explored and possible uses of programmable impedance elements are proposed.
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.
Resumo:
Although modern control techniques such as eigenstructure assignment have been given extensive coverage in control literature there is a reluctance to use them in practice as they are often not believed to be as `visible' or as simple as classical methods. A simple aircraft example is used, and it is shown that eigenstructure assignment can be used easily to produce a more viable controller than with simple classical techniques.
Resumo:
In the UK, architectural design is regulated through a system of design control for the public interest, which aims to secure and promote ‘quality’ in the built environment. Design control is primarily implemented by locally employed planning professionals with political oversight, and independent design review panels, staffed predominantly by design professionals. Design control has a lengthy and complex history, with the concept of ‘design’ offering a range of challenges for a regulatory system of governance. A simultaneously creative and emotive discipline, architectural design is a difficult issue to regulate objectively or consistently, often leading to policy that is regarded highly discretionary and flexible. This makes regulatory outcomes difficult to predict, as approaches undertaken by the ‘agents of control’ can vary according to the individual. The role of the design controller is therefore central, tasked with the responsibility of interpreting design policy and guidance, appraising design quality and passing professional judgment. However, little is really known about what influences the way design controllers approach their task, providing a ‘veil’ over design control, shrouding the basis of their decisions. This research engaged directly with the attitudes and perceptions of design controllers in the UK, lifting this ‘veil’. Using in-depth interviews and Q-Methodology, the thesis explores this hidden element of control, revealing a number of key differences in how controllers approach and implement policy and guidance, conceptualise design quality, and rationalise their evaluations and judgments. The research develops a conceptual framework for agency in design control – this consists of six variables (Regulation; Discretion; Skills; Design Quality; Aesthetics; and Evaluation) and it is suggested that this could act as a ‘heuristic’ instrument for UK controllers, prompting more reflexivity in relation to evaluating their own position, approaches, and attitudes, leading to better practice and increased transparency of control decisions.
Resumo:
Sometimes it is inconvenient or expensive to open the loop of a system to insert lag controllers-for instance, when this system is an open-loop system. A new controller structure where the loop is not opened, and that allows the design of lag controllers as in the case where one can open the loop, is presented. This result can be used by educators in undergraduate courses that deal with classic control system theory, because it allows a better comprehension of the concept of lag compensation and provides a new method for its design and implementation. An example illustrates the application of the proposed method.
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which. justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results. ©2008 IEEE.