926 resultados para Control-flow


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a fundamental experimental study of the flow structure around a single three-dimensional (3D) transonic shock control bump (SCB) mounted on a flat surface in a wind tunnel. Tests have been carried out with a Mach 1.3 normal shock wave located at a number of streamwise positions relative to the SCB. Details of the flow have been studied using the experimental techniques of schlieren photography, surface oil flow visualization, pressure sensitive paint, and laser Doppler anemometry. The results of the work build on the findings of previous researchers and shed new light on the flow physics of 3D SCBs. It is found that spanwise pressure gradients across the SCB ramp and the shape of the SCB sides affect the magnitude and uniformity of flow turning generated by the bump, which can impact on the spanwise propagation of the quasi-two-dimensional (2D) shock structure produced by a 3DSCB. At the bump crest, vortices can form if the pressure on the crest is significantly lower than at either side of the bump. The trajectories of these vortices, which are relatively weak, are strongly influenced by any spanwise pressure gradients across the bump tail. Asignificant difference between 2D and 3D SCBs highlighted by the study is the impact of spanwise pressure gradients on 3D SCB performance. The magnitude of these spanwise pressure gradients is determined largely by SCB geometry and shock position. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations-for an impermeable object placed either in a free-flowing fluid or in a fluid-filled porous medium-we show that the object can be coated with an inhomogeneous, anisotropic permeable medium, such as to preserve the flow that would have existed in the absence of the object. The proposed fluid flow cloak eliminates downstream wake and compensates viscous drag, hinting at the possibility of novel propulsion techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current understanding of periodic transonic flow is reviewed briefly. The effects of boundary-layer transition, non-adiabatic wall conditions and modifications to the aerofoil surface geometry at the shock interactions on periodic transonic flow are discussed. Through the methods presented, it is proposed that the frequency of periodic motion can be predicted with reasonable accuracy, but there are limitations on the prediction of buffet boundaries associated with periodic transonic flows. Several methods have been proposed by which the periodic motion may be virtually eliminated, most relevantly by altering the position of transition fix, contouring the aerofoils surface or adding a porous surface and a cavity in the region of shock interaction. In addition, it has been shown that heat transfer can have a significant effect on buffet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Precise control over the interfacial area of aqueous and organic slugs in segmented flow in a microchannel reactor provides an attractive means to optimize the yield and productivity of a phase-transfer-catalyzed reaction. Herein, we report the selective alkylation of phenylacetonitrile to the monoalkylated product in a microchannel of 250-mu m internal diameter operated in a continuous and solvent-free manner in the slug-flow regime. The conversion of phenylacetonitrile increased from 40% to 99% as a result of a 97% larger slug surface-to-volume ratio when the volumetric aqueous-to-organic phase flow ratio was raised from 1.0 to 6.1 at the same residence time. The larger surface-to-volume ratio significantly promoted catalyst phase transfer but decreased selectivity because of the simultaneous increase of the rate of the consecutive reaction to the dialkylated product. There exists all Optimum flow ratio with a maximum productivity. Conversion and selectivity in the microchannel reactor were both found to be significantly larger than in a stirred reactor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.