849 resultados para Constructivist artificial intelligence


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A avaliação perceptivo-auditiva tem papel fundamental no estudo e na avaliação da voz, no entanto, por ser subjetiva está sujeita a imprecisões e variações. Por outro lado, a análise acústica permite a reprodutibilidade de resultados, porém precisa ser aprimorada, pois não analisa com precisão vozes com disfonias mais intensas e com ondas caóticas. Assim, elaborar medidas que proporcionem conhecimentos confiáveis em relação à função vocal resulta de uma necessidade antiga dentro desta linha de pesquisa e atuação clínica. Neste contexto, o uso da inteligência artificial, como as redes neurais artificiais, indica ser uma abordagem promissora. Objetivo: Validar um sistema automático utilizando redes neurais artificiais para a avaliação de vozes rugosas e soprosas. Materiais e métodos: Foram selecionadas 150 vozes, desde neutras até com presença em grau intenso de rugosidade e/ou soprosidade, do banco de dados da Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru (FOB/USP). Dessas vozes, 23 foram excluídas por não responderem aos critérios de inclusão na amostra, assim utilizaram-se 123 vozes. Procedimentos: avaliação perceptivo-auditiva pela escala visual analógica de 100 mm e pela escala numérica de quatro pontos; extração de características do sinal de voz por meio da Transformada Wavelet Packet e dos parâmetros acústicos: jitter, shimmer, amplitude da derivada e amplitude do pitch; e validação do classificador por meio da parametrização, treino, teste e avaliação das redes neurais artificiais. Resultados: Na avaliação perceptivo-auditiva encontrou-se, por meio do teste Coeficiente de Correlação Intraclasse (CCI), concordâncias inter e intrajuiz excelentes, com p = 0,85 na concordância interjuízes e p variando de 0,87 a 0,93 nas concordâncias intrajuiz. Em relação ao desempenho da rede neural artificial, na discriminação da soprosidade e da rugosidade e dos seus respectivos graus, encontrou-se o melhor desempenho para a soprosidade no subconjunto composto pelo jitter, amplitude do pitch e frequência fundamental, no qual obteve-se taxa de acerto de 74%, concordância excelente com a avaliação perceptivo-auditiva da escala visual analógica (0,80 no CCI) e erro médio de 9 mm. Para a rugosidade, o melhor subconjunto foi composto pela Transformada Wavelet Packet com 1 nível de decomposição, jitter, shimmer, amplitude do pitch e frequência fundamental, no qual obteve-se 73% de acerto, concordância excelente (0,84 no CCI), e erro médio de 10 mm. Conclusão: O uso da inteligência artificial baseado em redes neurais artificiais na identificação, e graduação da rugosidade e da soprosidade, apresentou confiabilidade excelente (CCI > 0,80), com resultados semelhantes a concordância interjuízes. Dessa forma, a rede neural artificial revela-se como uma metodologia promissora de avaliação vocal, tendo sua maior vantagem a objetividade na avaliação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Results from a search of the technical report database over a 10-year period ... references cover only unclassified, unlimited document references with abstracts."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence extends to many areas and includes contributions to Machines Translation, word sense disambiguation, dialogue modeling and Information Extraction. This book celebrates the work of Yorick Wilks in the form of a selection of his papers which are intended to reflect the range and depth of his work. The volume accompanies a Festschrift which celebrates his contribution to the fields of Computational Linguistics and Artificial Intelligence. The papers include early work carried out at Cambridge University, descriptions of groundbreaking work on Machine Translation and Preference Semantics as well as more recent works on belief modeling and computational semantics. The selected papers reflect Yorick’s contribution to both practical and theoretical aspects of automatic language processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Humans consciously and subconsciously establish various links, emerge semantic images and reason in mind, learn linking effect and rules, select linked individuals to interact, and form closed loops through links while co-experiencing in multiple spaces in lifetime. Machines are limited in these abilities although various graph-based models have been used to link resources in the cyber space. The following are fundamental limitations of machine intelligence: (1) machines know few links and rules in the physical space, physiological space, psychological space, socio space and mental space, so it is not realistic to expect machines to discover laws and solve problems in these spaces; and, (2) machines can only process pre-designed algorithms and data structures in the cyber space. They are limited in ability to go beyond the cyber space, to learn linking rules, to know the effect of linking, and to explain computing results according to physical, physiological, psychological and socio laws. Linking various spaces will create a complex space — the Cyber-Physical-Physiological-Psychological-Socio-Mental Environment CP3SME. Diverse spaces will emerge, evolve, compete and cooperate with each other to extend machine intelligence and human intelligence. From multi-disciplinary perspective, this paper reviews previous ideas on various links, introduces the concept of cyber-physical society, proposes the ideal of the CP3SME including its definition, characteristics, and multi-disciplinary revolution, and explores the methodology of linking through spaces for cyber-physical-socio intelligence. The methodology includes new models, principles, mechanisms, scientific issues, and philosophical explanation. The CP3SME aims at an ideal environment for humans to live and work. Exploration will go beyond previous ideals on intelligence and computing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a substantial effort to build a real-time interactive multimodal dialogue system with a focus on emotional and non-verbal interaction capabilities. The work is motivated by the aim to provide technology with competences in perceiving and producing the emotional and non-verbal behaviours required to sustain a conversational dialogue. We present the Sensitive Artificial Listener (SAL) scenario as a setting which seems particularly suited for the study of emotional and non-verbal behaviour, since it requires only very limited verbal understanding on the part of the machine. This scenario allows us to concentrate on non-verbal capabilities without having to address at the same time the challenges of spoken language understanding, task modeling etc. We first summarise three prototype versions of the SAL scenario, in which the behaviour of the Sensitive Artificial Listener characters was determined by a human operator. These prototypes served the purpose of verifying the effectiveness of the SAL scenario and allowed us to collect data required for building system components for analysing and synthesising the respective behaviours. We then describe the fully autonomous integrated real-time system we created, which combines incremental analysis of user behaviour, dialogue management, and synthesis of speaker and listener behaviour of a SAL character displayed as a virtual agent. We discuss principles that should underlie the evaluation of SAL-type systems. Since the system is designed for modularity and reuse, and since it is publicly available, the SAL system has potential as a joint research tool in the affective computing research community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents a study about a the Baars-Franklin architecture, which defines a model of computational consciousness, and use it in a mobile robot navigation task. The insertion of mobile robots in dynamic environments carries a high complexity in navigation tasks, in order to deal with the constant environment changes, it is essential that the robot can adapt to this dynamism. The approach utilized in this work is to make the execution of these tasks closer to how human beings react to the same conditions by means of a model of computational consci-ousness. The LIDA architecture (Learning Intelligent Distribution Agent) is a cognitive system that seeks tomodel some of the human cognitive aspects, from low-level perceptions to decision making, as well as attention mechanism and episodic memory. In the present work, a computa-tional implementation of the LIDA architecture was evaluated by means of a case study, aiming to evaluate the capabilities of a cognitive approach to navigation of a mobile robot in dynamic and unknown environments, using experiments both with virtual environments (simulation) and a real robot in a realistic environment. This study concluded that it is possible to obtain benefits by using conscious cognitive models in mobile robot navigation tasks, presenting the positive and negative aspects of this approach.