967 resultados para Connecticut Institute of Water Resources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tullow Oil plc is to launch an onshore Early Production System (EPS) of oil drilling rated at 4,000 barrels of oil per day by 2009. The location of the EPS is in the Kaiso-Tonya area of Block 2 Oil Exploration Zone along Lake Albert within the Albertine graben. Tullow Oil plc contracted Environmental Resources Management (ERM) Southern Africa (Pty) Ltd in conjunction with Environmental Assessment Consult Limited (EACL) to undertake an Environmental Impact Assessment (EIA) for pre-construction and operation of the proposed EPS. ERM in association with EACL requested National Fisheries Resources Research Institute (NaFIRRI) to conduct a baseline survey of water quality and invertebrates in River Hohwa. This study was requested as part of an earlier baseline survey conducted at the Kaiso-Ngassa spit oil exploration area in Block 2. It was conducted at five selected sites (Fig. 1 & Table 1) within the Hohwa River basin in the Kaiso-Tonya Exploration Area 2. The study was pertinent because the targeted oil wells for EPS are upstream this river which drains the Kaiso-Ngassa valley into Ngassa lagoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has invaded most countries in the tropics and sub-tropics, introduced by man, mainly for ornamental purposes. Such introductions led to the infestation of most freshwater-ways in the southern United States of America, parts of Australia, the pacific islands, and most countries in Asia and Africa. The extensive tightly packed mats of water hyacinth are often associated with devastating socio-economic and environmental impacts. Invasion by the weed has, therefore, often generated urgent costly problems associated with the weed biomass and its management. A classic example of such problems was triggered by the invasion and proliferation of water hyacinth in the Lake Victoria Basin during the 1980s (Freilink 1989, Taylor 1993, Twongo et al., 1995). The weed infestation marked the beginning of a decade of intensive and systematic campaign by the three riparian states (Kenya, Tanzania and Uganda) to bring weed proliferation under control. The discussions in this Chapter span over ten years of dealing with the challenges paused by the imperative to manage infestations of water hyacinth in the Lake Victoria Basin. The challenges included the need to understand the dynamics of water hyacinth infestation; its distribution, proliferation and impact modalities; and the development and implementation of appropriate weed control strategies and options. Most specific examples were taken from the Ugandan experience (NARO, 2002).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Fisheries Resources Research Institute (NaFIRRI) on behalf of OPEP Consult Ltd undertook a baseline survey of the transition zone (basically along the shoreline) and near shore habitats of the Uganda apart of Lake Edward and Kazinga channel during December 2007 to January 2008. A major objective of the baseline survey was to generate baseline information on the aquatic ecosystem features related to the fisheries and socio-economics of the fish catch including issues raised by residents in the fish landing sites. Therefore, the baseline survey captured information on water quality, the aquatic invertebrate fauna, aspects of fish biology and ecology, the fish catch including facilities at fish landings, value in the catch and related fisheries socio-economic issues perceived by residents in the settled areas along the shores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The massive water hyacinth mats that covered water bodies in the 1990s had serious social and economic impacts. They affected fishing, transportation, water quality and health of fishing communities as well as production of goods and services of lake-based institutions (commercial establishments). At peak infestations, the communities and institutions were aware of and participated readily in control effort. However, after the major collapse of hyacinth in 1998, some of them relaxed in their control efforts. The status of knowledge, perception, impacts, preparedness and role of the lakeside communities and institutions to control the weed has, therefore, been monitored since the major resurgence of the weed to find out if the lakeside communities and institutions still perceive water hyacinth as a problem and the extent to which they are prepared to sustain control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships between nutrient concentrations and water hyacinth biomass and composition have been studied in the shallow inshore bays of lakes Victoria, Kyoga and Albert. Additional information was obtained from Victoria Nile, Albert Nile and Kagera River. In this section, seasonal changes in nutrients and oxygen concentrations are used to explain changes in water hyacinth composition, biomass and distribution in Lake Victoria. Lake Victoria is of particular interest because it experienced strong hyacinth infestations in 1995, a sink in 1998 and resurgence in 2001. The lake has also been extensively sampled and provides time series data in nutrient, oxygen, mixing and thermal stratification which provide an opportunity to relate water hyacinth distribution and biomass to environmental factors. The possible origins and impacts of nutrient loads into Lake Victoria are also discussed in relation to water hyacinth proliferation and distribution especially in relation to known 'hot-spots'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological control was foreseen as the long-term strategy for controlling water hyacinth in Uganda. Two species of weevils, Neochetina eichhorniae and Neochetina bruchi were imported into Uganda from Benin (West Africa) in 1993. A total of 600 weevils of each species were imported. The weevils were tested for specificity using key agricultural crops including maize, beans and bananas and were found to be water-hyacinth specific for their food and reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel approach to the analysis of supply and demand of water in California. A stochastic model is developed to assess the future supply of and demand for water resources in California. The results are presented in the form of a Sankey diagram where present and stochastically-varying future fluxes of water in California and its sub-regions are traced from source to services by mapping the various transformations of water from when it is first made available for use, through its treatment, recycling and reuse, to its eventual loss in a variety of sinks. This helps to highlight the connections of water with energy and land resources, including the amount of energy used to pump and treat water, the amount of water used for energy production, and the land resources that create a water demand to produce crops for food. By mapping water in this way, policy-makers can more easily understand the competing uses of water, through the identification of the services it delivers (e.g. sanitation, food production, landscaping), the potential opportunities for improving themanagement of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper focuses on a Sankey diagram for water, but the ultimate aim is the visualisation of linked resource futures through inter-connected Sankey diagrams for energy, land and water, tracking changes from the basic resources for all three, their transformations, and the final services they provide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salt water intrusion occurred frequently during dry season in Modaomen waterway of the Pearl River Estuary. With the development of region's economy and urbanization, the salt tides affect the region's water supply more and more seriously in recent years. Regulation and allocation of freshwater resources of the upper rivers of the estuary to suppress the salt tides is becoming important measures for ensuring the water supply security of the region in dry season. The observation data analysis showed that the flow value at the Wuzhou hydrometric station on the upper Xijiang river had a good correlation with the salinity in Modaomen estuary. Thus the flow rate of Wuzhou has been used as a control variable for suppression of salt tides in Modaomen estuary. However, the runoff at Wuzhou mainly comes from the discharge of Longtan reservoir on the upper reaches of Xijiang river and the runoff in the interval open valley between Longtan and Wuzhou sections. As the long distance and many tributaries as well as the large non-controlled watershed between this two sections, the reservoir water scheduling has a need for reasonable considering of interaction between the reservoir regulating discharge and the runoff process of the interval open watershed while the deployment of suppression flow at Wuzhou requires longer lasting time and high precision for the salt tide cycles. For this purpose, this study established a runoff model for Longtan - Wuzhou interval drainage area and by model calculations and observation data analysis, helped to understand the response patterns of the flow rate at Wuzhou to the water discharge of Longtan under the interval water basin runoff participating conditions. On this basis, further discussions were taken on prediction methods of Longtan reservoir discharge scheduling scheme for saline intrusion suppression and provided scientific and typical implementation programs for effective suppression flow process at the Wuzhou section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture in the Mojanda Watershed is facing rainfall reductions caused by climate change. Reductions of water availability in the Watershed are also due to constant extension of the agricultural activities into the páramo ecosystem above 3000m a.s.l., with this ecosystem having immanently important functions in the local water balance. The application of pesticides threatens the quality of water and with less precipitation contaminations will further concentrate in the outflow. To analyze problems associated with agricultural practices in the area a questionnaire about agricultural practices (28) was conducted and fields (20) were surveyed for pests and diseases with a focus on potatoes (Solanum tuberosum L.), tree tomatoes (Solanum betaceum Cav.) and peas (Pisum sativum L.). Potatoes were infected to a low degree with Phytophthora infestans and according to the farmers the Andean potato weevil (Premnotrypes spec.) caused biggest losses. To combat the weevil the soils are disinfected with toxic Carbofuran (WHO Class 1B). Tree tomatoes showed symptoms of various fungal diseases. Most important was Fusarium solani causing the branches to rot and Anthracnosis (Colletotrichum gloeosporioides) causing the fruits to rot. Fungicide applications were correspondingly high. Peas were only minorly affected by Ascochyta blight (Mycosphaerella pinodes) and a root rot. Overall 19 active ingredients were applied of which fungicide Mancozeb (WHO class table 5) and insecticide Carbofuran (WHO Class 1B) were applied the most. Approved IPM methods are advised to reduce pesticide use. For tree tomatoes regular cutting of branches infected with F. solani and regular collection and disposal of infected fruits with Anthracnosis are advised. For potatoes plastic barriers around the fields prevent the Andean potato weevil from laying eggs thus reducing infestation with the larvae in the tubers. Local bioinsecticide “Biol” seems effective and without harm to the environment, although not used by many farmers. Organic fertilization promises to restore decreasing soil fertility, water holding capacity and reduce erosion. The here presented alternatives and strategies to reduce pesticide use pose an opportunity to preserve the water resources of the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.