915 resultados para Conformal invariants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new configuration that employs a conducting conformal strip to excite the low-profile equilaterial-triangular dielectric resonator antenna (DRA) of very high permittivity is proposed. As compared with the previous aperture-coupling configuration, the new configuration has a wider impedance bandwidth (- 5.5%) and a higher front-to-back radiation ratio. The return loss, radiation patterns, and antenna gain are measured and discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cutoff wavenumbers of higher order modes in circular eccentric guides are computed with the variational analysis combined with a conformal mapping. A conformal mapping is applied to the variational formulation, and the variational equation is solved by the finite-element method. Numerical results for TE and TM cutoff wavenumbers are presented for different distances between the centers and ratio of the radii. Comparisons with numerical results found in the literature validate the presented method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent boom in wireless communication industry, especially in the area of cellular telephony and wireless data communication, has led to the increased demand for multi band antennas. In such applications the issues to be addressed are, wide bandwidth and gain, while striving for miniature geometry. A dual frequency configuration useful in GSM1800 and Blue tooth, is one that operates with similar properties, both in terms of reflection and radiation characteristics, in the two bands of interest. Dual frequency operations can be realized by exciting the Microstrip Patch Antenna (MPA) using a single feed [1] or dual feed [2]. In this paper, Conformal FDTD[3] method with Perfect Magnetic Conductor (PMC) applied along the plane of symmetry [4] is used to study the characteristics of an Octagonal MPA. The theoretical results are compared against the experimental and IE3D™ simulated results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selbstbestimmung und -gestaltung des eigenen Alltages gewinnen immer mehr an Bedeutung, insbesondere für ältere Mitmenschen in ländlichen Regionen, die auf ärztliche Versorgung angewiesen sind. Die Schaffung sogenannter smart personal environments mittels einer Vielzahl von, nahezu unsichtbar installierten Sensoren im gewohnten Lebensraum liefert dem Anwender (lebens-) notwendige Informationen über seine Umgebung oder seinen eigenen Körper. Dabei gilt es nicht den Anwender mit technischen Daten, wie Spektren, zu überfordern. Vielmehr sollte die Handhabung so einfach wie möglich gestaltet werden und die ausgewertete Information als Indikationsmittel zum weiteren Handeln dienen. Die Anforderungen an moderne Technologien sind folglich eine starke Miniaturisierung, zur optimalen Integration und Mobilität, bei gleichzeitig hoher Auflösung und Stabilität. Die Zielsetzung der vorliegenden Arbeit ist die Miniaturisierung eines spektroskopischen Systems bei gleichzeitig hohem Auflösungsvermögen für die Detektion im sichtbaren Spektralbereich. Eine Möglichkeit für die Herstellung eines konkurrenzfähigen „Mini-„ oder „Mikrospektrometers“ basiert auf Fabry-Pérot (FP) Filtersystemen, da hierbei die Miniaturisierung nicht wie üblich auf Gittersysteme limitiert ist. Der maßgebliche Faktor für das spektrale Auflösungsvermögen des Spektrometers ist die vertikale Präzision und Homogenität der einzelnen 3D Filterkavitäten, die die unterschiedlichen Transmissionswellenlängen der einzelnen Filter festlegen. Die wirtschaftliche Konkurrenzfähigkeit des am INA entwickelten Nanospektremeters wurde durch die maximale Reduzierung der Prozessschritte, nämlich auf einen einzigen Schritt, erreicht. Erstmalig wird eine neuartige Nanoimprint Technologie, die sog. Substrate Conformal Imprint Lithography, für die Herstellung von wellenlängen-selektierenden Filterkavitäten von stark miniaturisierten Spektrometern eingesetzt. Im Zuge dieser Arbeit wird das Design des FP Filtersystems entwickelt und technologisch mittels Dünnschichtdeposition und der Nanoimprinttechnologie realisiert. Ein besonderer Schwerpunkt liegt hierbei in der Untersuchung des Prägematerials, dessen optische Eigenschaften maßgeblich über die Performance des Filtersystems entscheiden. Mit Hilfe eines speziell gefertigten Mikroskopspektrometers werden die gefertigten Filterfelder hinsichtlich ihrer Transmissionseigenschaften und ihres Auflösungsvermögens hin untersucht. Im Hinblick auf publizierte Arbeiten konkurrierender Arbeitsgruppen konnte eine deutliche Verbesserung des miniaturisierten Spektrometers erreicht werden. Die Minimierung der Prozessschritte auf einen einzigen Prägeschritt sorgt gleichzeitig für eine schnelle und zuverlässige Replikation der wellenlängenselektierenden Filterkavitäten. Im Rahmen dieser Arbeit wurde aufgezeigt, dass das angestrebte Nanospektrometer, trotz der sehr geringen Größe, eine hohe Auflösung liefern kann und gerade wegen der starken Miniaturisierung mit kommerziellen Mini- und Mikro-spektrometern konkurrenzfähig ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of a boundary-fitted mesh generation method for use in modelling free surface flow and water quality. A numerical method has been developed for generating conformal meshes for curvilinear polygonal and multiply-connected regions. The method is based on the Cauchy-Riemann conditions for the analytic function and is able to map a curvilinear polygonal region directly onto a regular polygonal region, with horizontal and vertical sides. A set of equations have been derived for determining the lengths of these sides and the least-squares method has been used in solving the equations. Several numerical examples are presented to illustrate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A representation of the conformal mapping g of the interior or exterior of the unit circle onto a simply-connected domain Ω as a boundary integral in terms ofƒ|∂Ω is obtained, whereƒ :=g -l. A product integration scheme for the approximation of the boundary integral is described and analysed. An ill-conditioning problem related to the domain geometry is discussed. Numerical examples confirm the conclusions of this discussion and support the analysis of the quadrature scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the eigenvalue statistics of ensembles of normal random matrices when their order N tends to infinite. In the model, the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of equilibrium measures of normal random ensembles to the real line and give sufficient conditions for it to weakly converge to a Wigner measure.