987 resultados para Conductivity method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Losartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L-1 (2.71x10(-4) mol L-1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid oxide fuel cell (SOFC) technology has the potential to be a significant player in our future energy technology repertoire based on its ability to convert chemical energy into electrical energy. Infiltrated SOFCs, in particular, have demonstrated improved performance and at lower cost than traditional SOFCs. An infiltrated electrode comprises porous ceramic scaffolding (typically constructed from the oxygen ion conducting material) that is infiltrated with electron conducting and catalytic particles. Two important SOFC electrode properties are effective conductivity and three phase boundary density (TPB). Researchers study these electrode properties separately, and fail to recognize them as competing properties. This thesis aims to (1) develop a method to model the TPB density and use it to determine the effect of porosity, scaffolding particle size, and pore former size on TPB density as well as to (2) compare the effect of porosity, scaffolding particle size, and pore former size on TPB density and effective conductivity to determine a desired set of parameters for infiltrated SOFC electrode performance. A computational model was used to study the effect of microstructure parameters on the effective conductivity and TPB density of the infiltrated SOFC electrode. From this study, effective conductivity and TPB density are determined to be competing properties of SOFC electrodes. Increased porosity, scaffolding particle size, and pore former particle size increase the effective conductivity for a given infiltrate loading above percolation threshold. Increased scaffolding particle size and pore former size ratio, however, decreases the TPB density. The maximum TPB density is achievable between porosities of 45% and 60%. The effect of microstructure parameters are more prominent at low loading with scaffolding particle size being the most significant factor and pore former size ratio being the least significant factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A capillary electrophoresis method with contactless conductivity detection was evaluated as a new approach for quantification of creatine and phosphocreatine in human quadriceps femoris biopsy samples. The running buffers employed consisted of 1 M acetic acid at a pH of 2.3 for the determination of creatine and 50 mM 3-(N-morpholino)propanesulfonic acid/30 mM histidine at a pH of 6.4 for the determination of phosphocreatine in the centrifuged muscle extracts. The limits of detection for creatine and phosphocreatine were found to be 2.5 and 1.0 μM, respectively. Creatine and phosphocreatine were determined in six human muscle biopsy samples and the results were found comparable to those of a standard enzymatic assay. The procedures developed for creatine and phosphocreatine also allow the determination of creatinine as well as adenosine diphosphate and adenosine triphosphate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique to porewater extraction from claystone employs advective displacement of the in situ porewater by traced artificial porewater. Monitoring of tracer breakthrough yields species-specific transport properties. Results for Opalinus Clay from the Mont Terri Research Laboratory indicate that the chemical disturbances due to the method are minimal, and the observed significant differences in transport properties for Br– and 2H are in agreement with existing data. Sampling times are 2–4 months, and observation of tracer breakthrough takes 12–24 months at hydraulic conductivity of ∼10-13 m/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daphnia was collected from five subarctic ponds which differed greatly in their DOC contents and, consequently, their underwater light (UV) climates. Irrespective of which Daphnia species was present, and contrary to expectations, the ponds with the lowest DOC concentrations (highest UV radiation levels) contained Daphnia with the highest eicosapentaenoic acid (EPA) concentrations. In addition, EPA concentrations in these Daphnia generally decreased in concert with seasonally increasing DOC concentrations. Daphnia from three of the ponds was also tested for its tolerance to solar ultraviolet radiation (UVR) with respect to survival. Daphnia pulex from the clear water pond showed, by far, the best UV-tolerance, followed by D. longispina from the moderately humic and D. longispina from the very humic pond. In addition, we measured sublethal parameters related to UV-damage such as the degree to which the gut of Daphnia appeared green (as a measure of their ability to digest algae), and whether their guts appeared damaged. We developed a simple, noninvasive scoring system to quantify the proportion of the gut in which digestive processes were presumably active. This method allowed repeated measurement of the same animals over the course of the experiment. We demonstrated, for the first time, that sublethal damage of the gut precedes mortality caused by exposure to UVR. In a parallel set of experiments we fed UV-exposed and non-exposed algae to UV-exposed and non-exposed daphnids. UVR pretreatment of algae enhanced the negative effects of exposure to natural solar UV-irradiation in Daphnia. These UV-related effects were generally not specific to the species of Daphnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 1547 thermal conductivity values were determined by both the NP (needle probe method) and the QTM (quick thermal conductivity meter) on 1319 samples recovered during DSDP Leg 60. The NP method is primarily for the measurement of soft sedimentary samples, and the result is free from the effect of porewater evaporation. Measurement by the QTM method is faster and is applicable to all types of samples-namely, sediments (soft, semilithified, and lithified) and basement rocks. Data from the deep holes at Sites 453, 458, and 459 show that the thermal conductivity increases with depth, the rate of increase ranging from (0.18 mcal/cm s °C)/100 m at Site 459 to (0.72 mcal/cm s °C)/100 m at Site 456. A positive correlation between the sedimentary accumulation rate and the rate of thermal conductivity increase with depth indicates that both compaction and lithification are important factors. Drilled pillow basalts show nearly uniform thermal conductivity. At She 454 the thermal conductivity of one basaltic flow unit was higher near the center of the unit and lower toward the margin, reflecting variable vesicularity. Hydrothermally altered basalts at Site 456 showed higher thermal conductivity than fresh basalt because secondary calcite, quartz, and pyrite are generally more thermally conductive than fresh basalt. The average thermal conductivity in the top 50 meters of sediments correlates inversely with water depth because of dissolution of calcite, a mineral with high thermal conductivity, from the sediments as the water depth exceeds the lysocline and the carbonate compensation depth. Differences between the Mariana Trench data and the Mariana Basin and Trough data may reflect different abundances of terrigenous material in the sediment. There are remarkable correlations between thermal conductivity and other physical properties. The relationship between thermal conductivity and compressional wave velocity can be used to infer the ocean crustal thermal conductivity from the seismic velocity structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice shelves strongly impact coastal Antarctic sea-ice and the associated ecosystem through the formation of a sub-sea-ice platelet layer. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we applied a laterally-constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the landfast sea ice of Atka Bay, eastern Weddell Sea, in 2012. In addition to consistent fast-ice thickness and -conductivities along > 100 km transects; we present the first comprehensive, high resolution platelet-layer thickness and -conductivity dataset recorded on Antarctic sea ice. The reliability of the algorithm was confirmed by using synthetic data, and the inverted platelet-layer thicknesses agreed within the data uncertainty to drill-hole measurements. Ice-volume fractions were calculated from platelet-layer conductivities, revealing that an older and thicker platelet layer is denser and more compacted than a loosely attached, young platelet layer. The overall platelet-layer volume below Atka Bay fast ice suggests that the contribution of ocean/ice-shelf interaction to sea-ice volume in this region is even higher than previously thought. This study also implies that multi-frequency EM induction sounding is an effective approach in determining platelet layer volume on a larger scale than previously feasible. When applied to airborne multi-frequency EM, this method could provide a step towards an Antarctic-wide quantification of ocean/ice-shelf interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between saturated hydraulic conductivity (Ks) and grain-size distribution was evaluated for 49 sites underlain by either glacially over consolidated or normally consolidated fluvio-glacial deposits in the Puget Lowland. A linear regression comprising pairs of grain-size analyses and pilot infiltration tests predicts Ks with a 1 sigma uncertainty of a factor of about 3.5 with 70% of the population variance accounted for. The correlation coefficient R^2 of about 0.90 shows that there is a strong correlation between the grain-size distribution and Ks. In contrast, a widely applied analysis proposed by Massmann (2003) explains only 20% of the population variance for normally consolidated materials with an R^2 of only 0.15. That analysis entirely fails to explain the population variance for over consolidated materials. The method developed in this study is recommended for determination of Ks for fluvio-glacial deposits of the Puget Lowland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates two methods for estimating a soilís hydraulic conductivity: in-situ infiltration tests and grain-size analyses. There are numerous formulas in the literature that relate hydraulic conductivity to various parameters of the infiltrating medium, but studies have shown that these formulas do not perform well when applied to depositional environments that differ from those used to derive the formulas. Thus, there exists a need to specialize infiltration tests and related grain-size analyses for the Vashon advance outwash in the Puget Lowland. I evaluated 134 infiltration tests and 119 soil samples to find a correlation between grain-size parameters and hydraulic conductivity. This work shows that a constant-head borehole infiltration test that accounts for capillarity with alpha approximately 5m^-1 is an effective method for calculating hydraulic conductivity from our flow tests. Then, by conducting grain-size analysis and applying a multiple linear regression, I show that the hydraulic conductivity can also be estimated by log(K) = 1.906 + 0.102D_10 + 0.039D_60 - 0.034D_90 - 7.952F_fines. This result predicts the infiltration rate with a 95% confidence interval of 20 ft/day. The results of study are for application in the Puget Lowland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new approach for crosshole radio tomography. Conductivity images of the investigated area are reconstructed from the ratio of the electric field intensities measured at two similar frequencies. The method largely avoids assumptions about the radiation pattern and in-situ intensity of the transmitting antenna, which introduce errors in conventional single-frequency crosshole electromagnetic-absorption tomography. Application of the method to field data achieved an improvement in resolution of anomalies over traditional single-frequency absorption tomography. The dual-frequency method is not a universal approach; it is suitable for moderately conductive media (>0.01 S/m) over the approximate frequency range 1-100 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.