820 resultados para Computer-Aided Engineering
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.
Resumo:
OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.
Resumo:
OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.
Resumo:
BACKGROUND Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. PURPOSE To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. MATERIALS AND METHODS Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. RESULTS Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p < .001). Fracture rate of bars extensions (4.7% vs 14.8%, p < .001) and matrices (1% vs 13%, p < .001) was lower for Ti-bar. Matrices activation was required 2.4× less often in Ti-bar. ΔBIC remained stable for both groups. CONCLUSIONS Implant overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
This paper presents the rationale to build up a Telematics Engineering curriculum. Telematics is a strongly computing oriented area; then, the authors have initially intended to apply the common requirements described in the computing curricula elaborated by the ACM/EEEE-CS Joint Curriculum Task Force. This experience has revealed some problematic aspects in the ACM/IEEE-CS proposal. From the analysis of these problems, a model to guide the selection and specially the approach of the Telematics curriculum contents is proposed. This model can be easily generalized to other strongly computing oriented curricula, whose number is growing everyday
Resumo:
The present work is focused on studying two issues: the “teamwork” generic competence and the “academic motivation”. Currently the professional profile of engineers has a strong component of teamwork. On the other hand, motivational profile of students determines their tendencies when they come to work in team, as well as their performance at work. In this context we suggest four hypotheses: (H1) students improve their teamwork capacity by specific training and carrying out a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have better attitude towards team working; (H3) students with higher mastery motivation obtain better results in academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with computer science engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception about teamwork competence. Finally, and contrary to the initial hypothesis, these profiles appear to not influence significantly the academic performance of students.
Resumo:
The present work is aimed at discussing several issues related to the teamwork generic competence, motivational profiles and academic performance. In particular, we study the improvement of teamwork attitude, the predominant types of motivation in different contexts and some correlations among these three components of the learning process. The above-mentioned aspects are of great importance. Currently, the professional profile of engineers has a strong teamwork component and the motivational profile of students determines both their tendencies when they come to work as part of a team, as well as their performance at work. Taking these issues into consideration, we suggest four hypotheses: (H1) students improve their teamwork capacity through specific training and carrying out of a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have a better attitude towards teamwork; (H3) students with different types of motivations reach different levels of academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with Computer Science Engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception of teamwork competence. Finally, results point to a clear relationship between some kind of motivation and academic performance. In particular, four kinds of motivation are analyzed and students are classified into two groups according to them. After analyzing several marks obtained in compulsory courses, we perceive that those students that show higher motivation for avoiding failure obtain, in general, worse academic performance.
Resumo:
"UILU-ENG 77 1726."