888 resultados para Computer vision system
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
Colour image segmentation based on the hue component presents some problems due to the physical process of image formation. One of that problems is colour clipping, which appear when at least one of the sensor components is saturated. We have designed a system, that works for a trained set of colours, to recover the chromatic information of those pixels on which colour has been clipped. The chromatic correction method is based on the fact that hue and saturation are invariant to the uniform scaling of the three RGB components. The proposed method has been validated by means of a specific colour image processing board that has allowed its execution in real time. We show experimental results of the application of our method
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
Colour image segmentation based on the hue component presents some problems due to the physical process of image formation. One of that problems is colour clipping, which appear when at least one of the sensor components is saturated. We have designed a system, that works for a trained set of colours, to recover the chromatic information of those pixels on which colour has been clipped. The chromatic correction method is based on the fact that hue and saturation are invariant to the uniform scaling of the three RGB components. The proposed method has been validated by means of a specific colour image processing board that has allowed its execution in real time. We show experimental results of the application of our method
Resumo:
Este proyecto de investigación busca usar un sistema de cómputo basado en modelación por agentes para medir la percepción de marca de una organización en una población heterogénea. Se espera proporcionar información que permita dar soluciones a una organización acerca del comportamiento de sus consumidores y la asociada percepción de marca. El propósito de este sistema es el de modelar el proceso de percepción-razonamiento-acción para simular un proceso de razonamiento como el resultado de una acumulación de percepciones que resultan en las acciones del consumidor. Este resultado definirá la aceptación de marca o el rechazo del consumidor hacia la empresa. Se realizó un proceso de recolección información acerca de una organización específica en el campo de marketing. Después de compilar y procesar la información obtenida de la empresa, el análisis de la percepción de marca es aplicado mediante procesos de simulación. Los resultados del experimento son emitidos a la organización mediante un informe basado en conclusiones y recomendaciones a nivel de marketing para mejorar la percepción de marca por parte de los consumidores.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
Under the framework of the European Union Funded SAFEE project(1), this paper gives an overview of a novel monitoring and scene analysis system developed for use onboard aircraft in spatially constrained environments. The techniques discussed herein aim to warn on-board crew about pre-determined indicators of threat intent (such as running or shouting in the cabin), as elicited from industry and security experts. The subject matter experts believe that activities such as these are strong indicators of the beginnings of undesirable chains of events or scenarios, which should not be allowed to develop aboard aircraft. This project aimes to detect these scenarios and provide advice to the crew. These events may involve unruly passengers or be indicative of the precursors to terrorist threats. With a state of the art tracking system using homography intersections of motion images, and probability based Petri nets for scene understanding, the SAFEE behavioural analysis system automatically assesses the output from multiple intelligent sensors, and creates. recommendations that are presented to the crew using an integrated airborn user interface. Evaluation of the system is conducted within a full size aircraft mockup, and experimental results are presented, showing that the SAFEE system is well suited to monitoring people in confined environments, and that meaningful and instructive output regarding human actions can be derived from the sensor network within the cabin.
Resumo:
The project introduces an application using computer vision for Hand gesture recognition. A camera records a live video stream, from which a snapshot is taken with the help of interface. The system is trained for each type of count hand gestures (one, two, three, four, and five) at least once. After that a test gesture is given to it and the system tries to recognize it.A research was carried out on a number of algorithms that could best differentiate a hand gesture. It was found that the diagonal sum algorithm gave the highest accuracy rate. In the preprocessing phase, a self-developed algorithm removes the background of each training gesture. After that the image is converted into a binary image and the sums of all diagonal elements of the picture are taken. This sum helps us in differentiating and classifying different hand gestures.Previous systems have used data gloves or markers for input in the system. I have no such constraints for using the system. The user can give hand gestures in view of the camera naturally. A completely robust hand gesture recognition system is still under heavy research and development; the implemented system serves as an extendible foundation for future work.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
The aim of this paper is to present the current development status of a low cost system for surface reconstruction with structured light. The acquisition system is composed of a single off-the-shelf digital camera and a pattern projector. A pattern codification strategy was developed to allow the pattern recognition automatically and a calibration methodology ensures the determination of the direction vector of each pattern. The experiments indicated that an accuracy of 0.5mm in depth could be achieved for typical applications.