874 resultados para Computer science education


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Tanzania computer knowledge is vital to supplement the pace fast growing economic and development activities, which demands high and reliable level of expertise in com- puting field. In 2006, a research carried out at Tumaini University with purpose to design and implement a contextualized curriculum that can supplement for such needs hence facilitate development in Tanzanian context. A contextualized curriculum took advantage of six principles namely curriculum contex- tualization, projects, practical, interdisciplinary orientation, international recognition and continuous research for the program’s formative and development. Implementation of the curriculum followed the CATI (Contextualize, Apply, Transfer, and Import) model with emphasis on students to identify societal expectations at the early stage in learning process, in which case the graduates will potentially cater for societal expertise needs on ICT. This study adopts an emergent exploratory cross-section research design, while employ- ing a qualitative approach. This study was conducted at Tumaini University in Iringa where by purposeful sampling was used to obtain participants such as students, teach- ers, administrators and employers who participated in several focus group discussions, in-depth interviews and participant observation. The study reveals that six principles are satisfactorily met,despite of bottlenecks such as incompatibility in pedagogical thinking and technology availability for e-learning, learning attitudes, insufficient experts with actual skills and experience,in academic field among the others. The study recommends that iterative longitudinal study should be car- ried out to design for proper intervention in response to these problems which will help in improving and stabilize the curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation by Dr. Frank Ackerman. Additional information can be found on Montana Tech's Department of Computer Sciences website.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe how to use a Granular Linguistic Model of a Phenomenon (GLMP) to assess e-learning processes. We apply this technique to evaluate algorithm learning using the GRAPHs learning environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering for Boeing Australia. The aim of the course is to provide a common understanding for all Boeing Australia's engineering staff of the nature of software engineering and the practices used throughout Boeing Australia. It is meant as an introductory course that can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The course has been well-received by the participants, but the feedback from the course has indicated a need for more advanced courses in specific areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing understandings of the nature of an object-oriented program. Uncovering these different ways of understanding leads to agreater understanding of the critical aspects and their relationship tothe structure of the program produced. A phenomenographic studywas conducted to uncover practitioner understandings of the nature of an object-oriented program. The study identified five levels of understanding and three dimensions of variation within these levels. These levels and dimensions of variation provide a framework for fostering conceptual change with respect to the nature of an object-oriented program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phenomenographic study uncovers variations in the way that the subjects are aware of a phenomenon. In the categories of description that represent the variations in awareness there are features that, through their variation, define the characteristics of the categories. Teaching seeks to foster a change in the way that the learner is aware of a phenomenon through opening up a space of learning. This paper outlines the way that the outcome spaces from a phenomenographic study can be used to plan a teaching programme that utilises variations in the features. It discusses a strategy for teaching programming based on a phenomenographic study of practitioner conceptions of an object-oriented program. The strategy covers features related to the nature of an object-oriented program. Copyright 2010 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

March 19 - 22, 2006, São Paulo, BRAZIL World Congress on Computer Science, Engineering and Technology Education

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.