879 resultados para Computation time delay
Resumo:
Com a evolução da tecnologia, os UAVs (unmanned aerial vehicles) são cada vez mais utilizados, não só em missões de risco para o ser Humano, mas também noutro tipo de missões, como é o caso de missões de inspeção, vigilância, busca e salvamento. Isto devese ao baixo custo das plataformas assim como à sua enorme fiabilidade e facilidade de operação. Esta dissertação surge da necessidade de aumentar a autonomia dos UAVs do projeto PITVANT (Projeto de Investigação e Tecnologia em Veículos Aéreos Não Tripulados), projeto de investigação colaborativa entre a AFA (Academia da Força Aérea) e a FEUP (Faculdade de Engenharia da Universidade do Porto), relativamente ao planeamento de trajetórias entre dois pontos no espaço, evitando os obstáculos que intersetem o caminho. Para executar o planeamento da trajetória mais curta entre dois pontos, foi implementado o algoritmo de pesquisa A*, por ser um algoritmo de pesquisa de soluções ótimas. A área de pesquisa é decomposta em células regulares e o centro das células são os nós de pesquisa do A*. O tamanho de cada célula é dependente da dinâmica de cada aeronave. Para que as aeronaves não colidam com os obstáculos, foi desenvolvido um método numérico baseado em relações trigonométricas para criar uma margem de segurança em torno de cada obstáculo. Estas margens de segurança são configuráveis, sendo o seu valor por defeito igual ao raio mínimo de curvatura da aeronave à velocidade de cruzeiro. De forma a avaliar a sua escalabilidade, o algoritmo foi avaliado com diferentes números de obstáculos. As métricas utilizadas para avaliação do algoritmo foram o tempo de computação do mesmo e o comprimento do trajeto obtido. Foi ainda comparado o desempenho do algoritmo desenvolvido com um algoritmo já implementado, do tipo fast marching.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.
Resumo:
Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
We study the problem of privacy-preserving proofs on authenticated data, where a party receives data from a trusted source and is requested to prove computations over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source — even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. In this paper, we formalize the above three-party model, discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary computations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on Pinocchio (Oakland’13), ADSNARK achieves up to 25× improvement in proof-computation time and a 20× reduction in prover storage space.
Resumo:
The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.
Resumo:
Background¦The outcome after primary percutaneous coronary intervention (pPCI) for STElevation¦Myocardial Infarction (STEMI) is strongly affected by time delays. In thepresent study, we sought to identify the impact of specific socioeconomic factors on time delays, subsequent STEMI management and outcomes in STEMI patients from a well-defined region of the French part of Switzerland.¦Method¦A total of 402 consecutive patients undergoing pPCI for STEMI in a large tertiary hospital were retrospectively studied. Symptom-to-first-medical-contact time was analyzed for the following socioeconomic factors: level of education, gender, origin and marital status. Main exclusion criteria were: time delay beyond 12 hours, previous treatment by fibrinolysis or patients immediately referred for CABG.¦Therefore, 352 patients were finally included.¦Results¦At one year, there was no difference in mortality amongst the different socioeconomic groups. Furthermore, there was no difference in management characteristics between them. Symptom-to-first-medical-contact time was significantly higher for patients with a low level of education, Swiss citizens and non-married patients with median differences of 40 minutes, 48 minutes, and 60 minutes, respectively (p<0.05).¦Nevertheless, no difference was found regarding in-hospital management and clinical outcome.¦Conclusion¦This study demonstrates that symptom-to-first-medical-contact time is higher amongst people with a lower educational level, Swiss-citizens, and non-married people. Because of the low mortality rate in general, these differences in time delays did not affect clinical outcomes. Still, primary prevention measures should particularly focus on these vulnerable populations.
Resumo:
Este trabajo analiza el rendimiento del algoritmo de alineamiento de secuencias conocido como Needleman-Wunsch, sobre 3 sistemas de cómputo multiprocesador diferentes. Se analiza y se codifica el algoritmo serie usando el lenguaje de programación C y se plantean una serie de optimizaciones con la finalidad de minimizar el volumen y el tiempo de cómputo. Posteriormente, se realiza un análisis de las prestaciones del programa sobre los diferentes sistemas de cómputo. En la segunda parte del trabajo, se paraleliza el algoritmo serie y se codifica ayudándonos de OpenMP. El resultado son dos variantes del programa que difieren en la relación entre la cantidad de cómputo y la de comunicación. En la primera variante, la comunicación entre procesadores es poco frecuente y se realiza tras largos periodos de ejecución (granularidad gruesa). En cambio, en la segunda variante las tareas individuales son relativamente pequeñas en término de tiempo de ejecución y la comunicación entre los procesadores es frecuente (granularidad fina). Ambas variantes se ejecutan y analizan en arquitecturas multicore que explotan el paralelismo a nivel de thread. Los resultados obtenidos muestran la importancia de entender y saber analizar el efecto del multicore y multithreading en el rendimiento.