899 resultados para Computacional Intelligence in Medecine
Resumo:
The agent programming landscape has been revealed as a natural framework for developing “intelligence” in AI. This can be seen from the extensive use of the agent concept in presenting (and developing) AI systems, the proliferation of agent theories, and the evolution of concepts such as agent societies (social intelligence) and coordination.
Resumo:
Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.
Resumo:
This paper presents the knowledge model of a distributed decision support system, that has been designed for the management of a national network in Ukraine. It shows how advanced Artificial Intelligence techniques (multiagent systems and knowledge modelling) have been applied to solve this real-world decision support problem: on the one hand its distributed nature, implied by different loci of decision-making at the network nodes, suggested to apply a multiagent solution; on the other, due to the complexity of problem-solving for local network administration, it was useful to apply knowledge modelling techniques, in order to structure the different knowledge types and reasoning processes involved. The paper sets out from a description of our particular management problem. Subsequently, our agent model is described, pointing out the local problem-solving and coordination knowledge models. Finally, the dynamics of the approach is illustrated by an example.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Machine breakdowns are one of the main sources of disruption and throughput fluctuation in highly automated production facilities. One element in reducing this disruption is ensuring that the maintenance team responds correctly to machine failures. It is, however, difficult to determine the current practice employed by the maintenance team, let alone suggest improvements to it. 'Knowledge based improvement' is a methodology that aims to address this issue, by (a) eliciting knowledge on current practice, (b) evaluating that practice and (c) looking for improvements. The methodology, based on visual interactive simulation and artificial intelligence methods, and its application to a Ford engine assembly facility are described. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Background: Proton Magnetic Resonance Spectroscopy (H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. Methodology/Principal Findings: In this study, we used H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. Conclusions/Significance: H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind. © 2014 Patel, Blyth, Griffiths, Kelly and Talcott.
Resumo:
An expert system (ES) is a class of computer programs developed by researchers in artificial intelligence. In essence, they are programs made up of a set of rules that analyze information about a specific class of problems, as well as provide analysis of the problems, and, depending upon their design, recommend a course of user action in order to implement corrections. ES are computerized tools designed to enhance the quality and availability of knowledge required by decision makers in a wide range of industries. Decision-making is important for the financial institutions involved due to the high level of risk associated with wrong decisions. The process of making decision is complex and unstructured. The existing models for decision-making do not capture the learned knowledge well enough. In this study, we analyze the beneficial aspects of using ES for decision- making process.
Resumo:
Abstract Mandevillian intelligence is a specific form of collective intelligence in which individual cognitive vices (i.e., shortcomings, limitations, constraints and biases) are seen to play a positive functional role in yielding collective forms of cognitive success. In this talk, I will introduce the concept of mandevillian intelligence and review a number of strands of empirical research that help to shed light on the phenomenon. I will also attempt to highlight the value of the concept of mandevillian intelligence from a philosophical, scientific and engineering perspective. Inasmuch as we accept the notion of mandevillian intelligence, then it seems that the cognitive and epistemic value of a specific social or technological intervention will vary according to whether our attention is focused at the individual or collective level of analysis. This has a number of important implications for how we think about the cognitive impacts of a number of Web-based technologies (e.g., personalized search mechanisms). It also forces us to take seriously the idea that the exploitation (or even the accentuation!) of individual cognitive shortcomings could, in some situations, provide a productive route to collective forms of cognitive and epistemic success. Speaker Biography Dr Paul Smart Paul Smart is a senior research fellow in the Web and Internet Science research group at the University of Southampton in the UK. He is a Fellow of the British Computer Society, a professional member of the Association of Computing Machinery, and a member of the Cognitive Science Society. Paul’s research interests span a number of disciplines, including philosophy, cognitive science, social science, and computer science. His primary area of research interest relates to the social and cognitive implications of Web and Internet technologies. Paul received his bachelors degree in Psychology from the University of Nottingham. He also holds a PhD in Experimental Psychology from the University of Sussex.
Resumo:
Le informazioni di tipo geografico caratterizzano più dell'80% dei dati utilizzati nei processi decisionali di ogni grande azienda e la loro pervasività è in costante aumento. La Location Intelligence è un insieme di strumenti, metodologie e processi nati con l'obiettivo di analizzare e comprendere a pieno il patrimonio informativo presente in questi dati geolocalizzati. In questo progetto di tesi si è sviluppato un sistema completo di Location Intelligence in grado di eseguire analisi aggregate dei dati georeferenziati prodotti durante l'operatività quotidiana di una grande azienda multiservizi italiana. L’immediatezza dei report grafici e le comparazioni su serie storiche di diverse sorgenti informative integrate generano un valore aggiunto derivante dalle correlazioni individuabili solo grazie a questa nuova dimensione di analisi. In questo documento si illustrano tutte le fasi caratterizzanti del progetto, dalla raccolta dei requisiti utente fino all’implementazione e al rilascio dell’applicativo, concludendo con una sintesi delle potenzialità di analisi generate da questa specifica applicazione e ai suoi successivi sviluppi.
Resumo:
“La Business Intelligence per il monitoraggio delle vendite: il caso Ducati Motor Holding”. L’obiettivo di questa tesi è quello di illustrare cos’è la Business Intelligence e di mostrare i cambiamenti verificatisi in Ducati Motor Holding, in seguito alla sua adozione, in termini di realizzazione di report e dashboard per il monitoraggio delle vendite. L’elaborato inizia con una panoramica generale sulla storia e gli utilizzi della Business Intelligence nella quale vengono toccati i principali fondamenti teorici: Data Warehouse, data mining, analisi what-if, rappresentazione multidimensionale dei dati, costruzione del team di BI eccetera. Si proseguirà mediante un focus sui Big Data convogliando l’attenzione sul loro utilizzo e utilità nel settore dell’automotive (inteso nella sua accezione più generica e cioè non solo come mercato delle auto, ma anche delle moto), portando in questo modo ad un naturale collegamento con la realtà Ducati. Si apre così una breve overview sull’azienda descrivendone la storia, la struttura commerciale attraverso la quale vengono gestite le vendite e la gamma dei prodotti. Dal quarto capitolo si entra nel vivo dell’argomento: la Business Intelligence in Ducati. Si inizia descrivendo le fasi che hanno fino ad ora caratterizzato il progetto di Business Analytics (il cui obiettivo è per l'appunto introdurre la BI i azienda) per poi concentrarsi, a livello prima teorico e poi pratico, sul reporting sales e cioè sulla reportistica basata sul monitoraggio delle vendite.
Resumo:
Alliance formation is a critical dimension of social intelligence in political, social and biological systems. As some allies may provide greater ‘leverage’ than others during social conflict, the cognitive architecture that supports alliance formation in humans may be shaped by recent experience, for example in light of the outcomes of violent or non-violent forms intrasexual competition. Here we used experimental priming techniques to explore this issue. Consistent with our predictions, while men’s preference for dominant allies strengthened following losses (compared to victories) in violent intrasexual contests, women’s preferences for dominant allies weakened following losses (compared to victories) in violent intrasexual contests. Our findings suggest that while men may prefer dominant (i.e. masculine) allies following losses in violent confrontation in order to facilitate successful resource competition, women may ‘tend and befriend’ following this scenario and seek support from prosocial (i.e. feminine) allies and/or avoid the potential costs of dominant allies as long-term social partners. Moreover, they demonstrate facultative responses to signals related to dominance in allies, which may shape sex differences in sociality in light of recent experience and suggest that intrasexual selection has shaped social intelligence in humans.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 28 de Junho de 2016, Universidade dos Açores.
Resumo:
Social networks rely on concepts such as collaboration, cooperation, replication, flow, speed, interaction, engagement, and aim the continuous sharing and resharing of information in support of the permanent social interaction. Facebook, the largest social network in the world, reached, in May 2016, the mark of 1.09 billion active users daily, draining 161.7 million hours of users’ attention to the website every day. These users share 4.75 billion units of content daily. The research presented in this dissertation aims to investigate the management of knowledge and collective intelligence, from the introduction of mechanisms that aim to enable users to manage and organize current information in the feeds from Facebook groups in which they participate, turning Facebook into a collective knowledge and information management device that goes far beyond mere interaction and communication among people. The adoption of Design Science Research methodology is intended to instill the "genes" of collective intelligence, as presented in the literature, in the computational artifact being developed, so that intelligence can be managed and used to create even more knowledge and intelligence to and by the group. The main theoretical contribution of this dissertation is to discuss knowledge management and collective intelligence in a complementary and integrated manner, showing how efforts to obtain one also contribute to leveraging the other.
Resumo:
Resuscitation and stabilization are key issues in Intensive Care Burn Units and early survival predictions help to decide the best clinical action during these phases. Current survival scores of burns focus on clinical variables such as age or the body surface area. However, the evolution of other parameters (e.g. diuresis or fluid balance) during the first days is also valuable knowledge. In this work we suggest a methodology and we propose a Temporal Data Mining algorithm to estimate the survival condition from the patient’s evolution. Experiments conducted on 480 patients show the improvement of survival prediction.