1000 resultados para Composition d’acides gras plasmatiques
Resumo:
Dietary fatty acids are known to influence the phospholipid composition of many tissues in the body, with lipid turnover occurring rapidly. The aim of this study was to investigate whether changes in the fatty acid composition of the diet can affect the phospholipid composition of the lens. Male Sprague-Dawley rats were fed three diets with distinct profiles in both essential and non-essential fatty acids. After 8 weeks, lenses and skeletal muscle were removed, and the lenses sectioned into nuclear and cortical regions. In these experiments, the lens cortex was synthesised during the course of the variable lipid diet. Phospholipids were then identified by electrospray ionisation tandem mass spectrometry, and quantified via the use of internal standards. The phospholipid compositions of the nuclear and cortical regions of the lens differed slightly between the two regions, but comparison of the equivalent regions across the diet groups showed remarkable similarity. In contrast, the phospholipid composition of skeletal muscle (medial gastrocnemius) in these rats varied significantly. This study provides the first direct evidence to show that the phospholipid composition of the lens is tightly regulated and thus appears to be independent of diet. As phospholipids determine membrane fluidity and influence the activity and function of integral membrane proteins, regulation of their composition may be important for the function of the lens. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.
Resumo:
This study examined questions concerning differences in the acyl composition of membrane phospholipids that have been linked to the faster rates of metabolic processes in endotherms versus ectotherms. In liver, kidney, heart and brain of the ectothermic reptile, Trachydosaurus rugosus, and the endothermic mammal, Rattus norvegicus, previous findings of fewer unsaturates but a greater unsaturation index (UI) in membranes of the mammal versus those of the reptile were confirmed. Moreover, the study showed that the distribution of phospholipid head-group classes was similar in the same tissues of the reptile and mammal and that the differences in acyl composition were present in all phospholipid classes analysed, suggesting a role for the physical over the chemical properties of membranes in determining the faster rates of metabolic processes in endotherms. The most common phosphatidylcholine (PC) molecules present in all tissues (except brain) of the reptile were 16:0/18:1, 16:0/18:2, 18:0/18:2, 18:1/18:1 and 18:1/18:2, whereas arachidonic acid (20:4), containing PCs 16:0/ 20: 4, 18: 0/ 20: 4, were the common molecules in the mammal. The most abundant phosphatidylethanolamines ( PE) used in the tissue of the reptile were 18:0/18:2, 18:0/20:4, 18:1/18:1, 18:1/18:2 and 18:1/20:4, compared to 16: 0/ 18: 2, 16: 0/ 20: 4, 16: 0/ 22: 6, 18: 0/ 20: 4, 18: 0/ 22: 6 and 18:1/20: 4 in the mammal. UI differences were primarily due to arachidonic acid found in both PC and PEs, whereas docosahexaenoic acid (22:6) was a lesser contributor mainly within PEs and essentially absent in the kidney. The phospholipid composition of brain was more similar in the reptile and mammal compared to those of other tissues.
Resumo:
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).
Resumo:
Knowledge of the amounts and types of fatty acids in groundnut oil is beneficial, particularly from a nutritional standpoint. Germplasm evaluation data for fatty acid composition on 819 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for eight quantitative fatty acid descriptors have been documented. Statistical assessment, via methods of pattern analysis, summarised and described the patterns of variation in fatty acid composition of the groundnut accessions in the Australian germplasm collection. Presentation of the results from principal components analysis and hierarchical cluster analysis using a biplot was shown to be a very useful interpretative tool. Such a biplot enables a simultaneous examination of the relationships among all the accessions and the fatty acids. Unlike that information available via database searches, the results from contribution analysis together with the biplot provide a global picture of the diversity available for use in plant breeding programs. The use of standardised data for eight fatty acids, compared to using three specific fatty acids, provided a better description of the total diversity available because it remains relevant with possible changes in the nutritional preferences for fatty acids. Fatty acid composition was found to vary in relation to the branching pattern of the accessions. This pattern is generally indicative of the botanical types of groundnuts; Virginia (alternate) compared to Spanish and Valencia (sequential) botanical types.
Resumo:
The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.
Resumo:
The highly unusual structural and electronic properties of the α-phase of (Si1-xCx)3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si 1-xCx)3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si 1-xCx)3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1-xCx)3N 4 is found to be closer to that of α-Si3N 4 than of α-C3N4. Plasma-assisted synthesis experiments of CNx and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C-N and Si-N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.
Resumo:
The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Resumo:
The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.
Resumo:
A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.
Resumo:
It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.
Resumo:
Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si1-xC x; x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si1-xCx QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.
Resumo:
This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.