988 resultados para Complex domains


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast Rsp5p and its mammalian homologue, Nedd4, are hect domain ubiquitin-protein ligases (E3s) required for the ubiquitin-dependent endocytosis of plasma membrane proteins. Because ubiquitination is sufficient to induce internalization, E3-mediated ubiquitination is a key regulatory event in plasma membrane protein endocytosis. Rsp5p is an essential, multidomain protein containing an amino-terminal C2 domain, three WW protein-protein interaction domains, and a carboxy-terminal hect domain that carries E3 activity. In this study, we demonstrate that Rsp5p is peripherally associated with membranes and provide evidence that Rsp5p functions as part of a multimeric protein complex. We define the function of Rsp5p and its domains in the ubiquitin-dependent internalization of the yeast α-factor receptor, Ste2p. Temperature-sensitive rsp5 mutants were unable to ubiquitinate or to internalize Ste2p at the nonpermissive temperature. Deletion of the entire C2 domain had no effect on α-factor internalization; however, point mutations in any of the three WW domains impaired both receptor ubiquitination and internalization. These observations indicate that the WW domains play a role in the important regulatory event of selecting phosphorylated proteins as endocytic cargo. In addition, mutations in the C2 and WW1 domains had more severe defects on transport of fluid-phase markers to the vacuole than on receptor internalization, suggesting that Rsp5p functions at multiple steps in the endocytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent sequencing of several complete genomes has made it possible to track the evolution of large gene families by their genomic structure. Following the large-scale association of exons encoding domains with well defined functions in invertebrates could be useful in predicting the function of complex multidomain proteins in mammals produced by accretion of domains. With this objective, we have determined the genomic structure of the 14 genes in invertebrates and vertebrates that contain rel domains. The sequence encoding the rel domain is defined by intronic boundaries and has been recombined with at least three structurally and functionally distinct genomic sequences to generate coding sequences for: (i) the rel/Dorsal/NFκB proteins that are retained in the cytoplasm by IkB-like proteins; (ii) the NFATc proteins that sense calcium signals and undergo cytoplasmic-to-nuclear translocation in response to dephosphorylation by calcineurin; and (iii) the TonEBP tonicity-responsive proteins. Remarkably, a single exon in each NFATc family member encodes the entire Ca2+/calcineurin sensing region, including nuclear import/export, calcineurin-binding, and substrate regions. The Rel/Dorsal proteins and the TonEBP proteins are present in Drosophila but not Caenorhabditis elegans. On the other hand, the calcium-responsive NFATc proteins are present only in vertebrates, suggesting that the NFATc family is dedicated to functions specific to vertebrates such as a recombinational immune response, cardiovascular development, and vertebrate-specific aspects of the development and function of the nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrin αLβ2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the αM and α2 subunits has been crystallized in both open and closed conformations; however, the αL I domain has been crystallized in only the closed conformation. We hypothesized that the αL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the αL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg2+. Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The kon, koff, and KD values for the locked open I domain were within 1.5-fold of values previously determined for the αLβ2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized αLβ2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptotic DNA fragmentation is mediated by a caspase-activated DNA fragmentation factor (DFF)40. Expression and folding of DFF40 require the presence of DFF45, which also acts as a nuclease inhibitor before DFF40 activation by execution caspases. The N-terminal domains (NTDs) of both proteins are homologous, and their interaction plays a key role in the proper functioning of this two-component system. Here we report that the NTD of DFF45 alone is unstructured in solution, and its folding is induced upon binding to DFF40 NTD. Therefore, folding of both proteins regulates the formation of the DFF40/DFF45 complex. The solution structure of the heterodimeric complex between NTDs of DFF40 and DFF45 reported here shows that the mutual chaperoning includes the formation of an extensive network of intermolecular interactions that bury a hydrophobic cluster inside the interface, surrounded by intermolecular salt bridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) comprises two subunits, TAP1 and TAP2, each containing a hydrophobic membrane-spanning region (MSR) and a nucleotide binding domain (NBD). The TAP1/TAP2 complex is required for peptide translocation across the endoplasmic reticulum membrane. To understand the role of each structural unit of the TAP1/TAP2 complex, we generated two chimeras containing TAP1 MSR and TAP2 NBD (T1MT2C) or TAP2 MSR and TAP1 NBD (T2MT1C). We show that TAP1/T2MT1C, TAP2/T1MT2C, and T1MT2C/T2MT1C complexes bind peptide with an affinity comparable to wild-type complexes. By contrast, TAP1/T1MT2C and TAP2/T2MT1C complexes, although observed, are impaired for peptide binding. Thus, the MSRs of both TAP1 and TAP2 are required for binding peptide. However, neither NBD contains unique determinants required for peptide binding. The NBD-switched complexes, T1MT2C/T2MT1C, TAP1/T2MT1C, and TAP2/T1MT2C, all translocate peptides, but with progressively reduced efficiencies relative to the TAP1/TAP2 complex. These results indicate that both nucleotide binding sites are catalytically active and support an alternating catalytic sites model for the TAP transport cycle, similar to that proposed for P-glycoprotein. The enhanced translocation efficiency of TAP1/T2MT1C relative to TAP2/T1MT2C complexes correlates with enhanced binding of the TAP1 NBD-containing constructs to ATP-agarose beads. Preferential ATP interaction with TAP1, if occurring in vivo, might polarize the transport cycle such that ATP binding to TAP1 initiates the cycle. However, our observations that TAP complexes containing two identical TAP NBDs can mediate translocation indicate that distinct properties of the nucleotide binding site per se are not essential for the TAP catalytic cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural maintenance of chromosomes (SMC) protein encoded by the fission yeast rad18 gene is involved in several DNA repair processes and has an essential function in DNA replication and mitotic control. It has a heterodimeric partner SMC protein, Spr18, with which it forms the core of a multiprotein complex. We have now isolated the human orthologues of rad18 and spr18 and designated them hSMC6 and hSMC5. Both proteins are about 1100 amino acids in length and are 27–28% identical to their fission yeast orthologues, with much greater identity within their N- and C-terminal globular domains. The hSMC6 and hSMC5 proteins interact to form a tight complex analogous to the yeast Rad18/Spr18 heterodimer. In proliferating human cells the proteins are bound to both chromatin and the nucleoskeleton. In addition, we have detected a phosphorylated form of hSMC6 that localizes to interchromatin granule clusters. Both the total level of hSMC6 and its phosphorylated form remain constant through the cell cycle. Both hSMC5 and hSMC6 proteins are expressed at extremely high levels in the testis and associate with the sex chromosomes in the late stages of meiotic prophase, suggesting a possible role for these proteins in meiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein phosphoaspartate bonds play a variety of roles. In response regulator proteins of two-component signal transduction systems, phosphorylation of an aspartate residue is coupled to a change from an inactive to an active conformation. In phosphatases and mutases of the haloacid dehalogenase (HAD) superfamily, phosphoaspartate serves as an intermediate in phosphotransfer reactions, and in P-type ATPases, also members of the HAD family, it serves in the conversion of chemical energy to ion gradients. In each case, lability of the phosphoaspartate linkage has hampered a detailed study of the phosphorylated form. For response regulators, this difficulty was recently overcome with a phosphate analog, BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}, which yields persistent complexes with the active site aspartate of their receiver domains. We now extend the application of this analog to a HAD superfamily member by solving at 1.5-Å resolution the x-ray crystal structure of the complex of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} with phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The structure is comparable to that of a phosphoenzyme intermediate: BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} is bound to Asp-11 with the tetrahedral geometry of a phosphoryl group, is coordinated to Mg2+, and is bound to residues surrounding the active site that are conserved in the HAD superfamily. Comparison of the active sites of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}⋅PSP and BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}⋅CeY, a receiver domain/response regulator, reveals striking similarities that provide insights into the function not only of PSP but also of P-type ATPases. Our results indicate that use of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} for structural studies of proteins that form phosphoaspartate linkages will extend well beyond response regulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

rho-like GTP binding proteins play an essential role in regulating cell growth and actin polymerization. These molecular switches are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. Using the interaction-trap assay to identify candidate proteins that bind the cytoplasmic region of the LAR transmembrane protein tyrosine phosphatase (PT-Pase), we isolated a cDNA encoding a 2861-amino acid protein termed Trio that contains three enzyme domains: two functional GEF domains and a protein serine/threonine kinase (PSK) domain. One of the Trio GEF domains (Trio GEF-D1) has rac-specific GEF activity, while the other Trio GEF domain (Trio GEF-D2) has rho-specific activity. The C-terminal PSK domain is adjacent to an Ig-like domain and is most similar to calcium/calmodulin-dependent kinases, such as smooth muscle myosin light chain kinase which similarly contains associated Ig-like domains. Near the N terminus, Trio has four spectrin-like repeats that may play a role in intracellular targeting. Northern blot analysis indicates that Trio has a broad tissue distribution. Trio appears to be phosphorylated only on serine residues, suggesting that Trio is not a LAR substrate, but rather that it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions, we propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach of comparing protein structures that does not involve the procedure of superposition is suggested. An invariant system of coordinates for immunoglobulin molecules that is based on the geometrical symmetry inherent to the variable domain light-chain (VL)-heavy-chain (VH) complex is described. The coordinates of the Calpha atoms in 22 immunoglobulin structures are calculated in the invariant system of coordinates. We found that 76 identical positions in this Calpha framework are symmetrical about the twofold axis. Comparison of the identical positions in these molecules allows us to select 96 positions in the light chains and 87 positions in the heavy chains whose Calpha atom coordinates are approximately the same. To check whether the average coordinates of Calpha atoms in these positions complies with the stereochemical requirements, we calculated Calpha-Calpha distances. Seventy-three positions of the light chains and 72 positions of the heavy chains satisfy the Calpha-Calpha distance criterion. The Calpha atoms in these positions are used for constructing the "standard" Calpha framework of VL and VH complexes. The average coordinates of Calpha atoms are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding reactions between human growth hormone (hGH) and its receptor provide a detailed account of how a polypeptide hormone activates its receptor and more generally how proteins interact. Through high-resolution structural and functional studies it is seen that hGH uses two different sites (site 1 and site 2) to bind two identical receptor molecules. This sequential dimerization reaction activates the receptor, presumably by bringing the intracellular domains into close proximity so they may activate cytosolic components. As a consequence of this mechanism it is possible to build antagonists to the receptor by introducing mutations in hGH that block binding at site 2 and to build even more potent antagonists by combining these with mutants that enhance binding at site 1. Alanine-scanning mutagenesis of all contact residues at the site 1 interface shows that only a small and complementary set of side chains clustered near the center of the interface affects binding. The most important contacts are hydrophobic, and these are surrounded by polar and charged interactions of lesser importance. Kinetic analysis shows for the most part that the important side chains function to maintain the complex, not to guide the hormone to the receptor. Hormone-induced homodimerization or heterodimerization reactions are turning out to be pervasive mechanisms for signal transduction. Moreover, the molecular recognition principles seen in the hGH-receptor complex are likely to generalize to other protein-protein complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All of the DNA cleavage and strand transfer events required for transposition of insertion sequence IS10 are carried out by a 46-kDa IS10-encoded transposase protein. Limited proteolysis demonstrates that transposase has two principal structural domains, a 28-kDa N-terminal domain (N alpha beta; aa 1-246) and a 17-kDa C-terminal domain (C; aa 256-402). The two domains are connected by a 1-kDa proteolytic-sensitive linker region (aa 247-255). The N-terminal domain N alpha beta can be further subdivided into domains N alpha and N beta by a weaker protease-sensitive site located 6 kDa (53 aa) from the N terminus. The N beta and N alpha beta fragments are capable of nonspecific DNA binding as determined by Southwestern blot analysis. None of the fragments alone is capable of carrying out the first step of transposition, assembly of a synaptic complex containing a pair of transposon ends. Remarkably, complete transposition activity can be reconstituted by mixing fragment N alpha beta and fragment C, with or without the intervening linker region. We infer that the structural integrity of transposase during the transitions involved in the chemical steps of the transposition reaction is maintained independent of the linker, presumably by direct contacts between and among the principal domains. Reconstitution of activity in the absence of the linker region is puzzling, however, because mutations that block strand transfer or affect insertion specificity alter linker region residues. Additional reconstitution experiments demonstrate that the N alpha region is dispensable for formation of a synaptic complex but is required for complexes to undergo cleavage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.