460 resultados para Complementation
Resumo:
Anabaena sp. PCC; 7120 was mutagenized by transposon Tn5-1087b, generating a mutant whose heterocysts lack the envelope polysaccharide layer. The transposon was located between nucleotides 342 and 343 of alr0117, a 918 bp gene encoding a histidine kinase for a two-component regulatory system. Complementation of the mutant with a DNA fragment containing alr0117 and targeted inactivation of the gene confirmed that alr0117 is involved in heterocyst development. RT-PCR showed that alr0117 was constitutively expressed in the presence or absence of a combined-nitrogen source. hepA and patB, the two genes turned on during wild-type heterocyst development, were no longer activated in an alr0117-null mutant. The two-component signal transduction system involving alr0117 may control the formation of the envelope polysaccharide layer and certain late events essential to the function of heterocysts.
Resumo:
Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31-137 of EseC are required for EseC-EscA interaction, Mutation of EseC residues 31-137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31-137 of EseC increased the LD50 by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.
Resumo:
Barcodes based on mitochondrial cytochrome oxidase (mtDNA CO1) sequences are being used for broad taxonomic groups of animals with demonstrated success in species identification and cryptic species discovery, but it has become clear that complementation by a nuclear marker system is necessary, in particular for the barcoding of plants. Here, we propose the nuclear internal transcribed spacer (ITS) as a potentially usable and complementary marker for species identification of red macroalgae, as well as present a primary workflow for species barcoding. Data show that for most red macroalgal genera (except members of the family Delesseriaceae), the size of ITS region ranges from 600 to 1200 bp, and contains enough variation to generate unique identifiers at either the species or genus levels. Consistent with previous studies, we found that the ITS sequence can resolve closely related species with the same fidelity as mtDNA CO1. Significantly, we confirmed that length polymorphism in the ITS region (including 5.8S rRNA gene) can be utilized as a character to discriminate red macroalgal species. As a complementary marker, the verifiable nuclear ITS region can speed routine identification and the detection of species, advance ecological and taxonomic inquiry, and permit rapid and accurate analysis of red macroalgae.
Resumo:
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.
Resumo:
Due to the increasing incidence of antibiotic resistant strains, the use of novel antimicrobials, such as bacteriocins, has become an ever more likely prospect. Lacticin 3147 (of which there are two components, Ltnα and Ltnβ) and nisin belong to the subgroup of bacteriocins called the lantibiotics, which has attracted much attention in recent years. The lantibiotics are antimicrobial peptides that contain unusual amino acids resulting from a series of enzyme-mediated post translational modifications. Given that there have been relatively few examples of lantibiotic-specific resistance; these antimicrobials appear to represent valid alternatives to classical antibiotics. However, the fact that lantibiotics are naturally only produced in small amounts often hinders their commercialisation. In order to overcome this bottleneck, several approaches can be employed. For example, we can create a situation that reduces the quantity of a lantibiotic required to inhibit a target by combining it with other antimicrobials. Here, following an initial screen involving lacticin 3147 and several classical antibiotics, it was observed between lacticin 3147 and the commercial antibiotics polymyxin B/E function synergistically. This reduced the amounts of the individual antimicrobials required for kill and broadened the spectrum of inhibition of both agents. Upon combination with polymyxins, lacticin 3147, which has been associated with Gram positive targets only, actively targeted Gram negative species such as Escherichia coli and Cronobacter sp. An alternative means of addressing problems associated with lantibiotic yield is to better understand how production is regulated, and ultimately use this information to enhance peptide levels. With this in mind the regulation of lacticin 3147 production from the promoter Pbac was investigated using a green fluorescent protein (GFP) expression reporter system. This revealed that elements within both of the divergent operons of the lacticin 3147 gene cluster are involved in Pbac regulation. That is, LtnR, already established as a negative regulator of itself and the lacticin 3147 associated immunity genes, also acts as an activator of Pbac transcription. In contrast, an enhanced level of expression is observed in the absence of the lacticin 3147 structural genes, ltnA1 and ltnA2, indicating that these genes/gene products are involved in Pbac repression. In fact, through complementation of the ltnA2 gene, it was revealed that this regulation is more likely to be dependent on the presence of the gene transcript rather that the corresponding prepropeptide or modified Ltnβ. It may be that if lacticin 3147 production is successfully enhanced, the ability of the producing cell to protect itself may become an issue. To prepare for such a possibility a bioengineered derivative of the lacticin 3147 immunity protein LtnI (LtnI I81V) which provides enhanced protection was discovered through an in depth investigation involving the site and saturation mutagenesis of this protein. In addition, the creation of truncated forms of LtnI allowed the identification of important and essential regions of this immunity protein. Finally, as mentioned, self-immunity is essential to prevent self-killing. However the discovery of nisin U immunity and regulatory gene homologues (spiFEGRR’K) within the pathogenic strain S. infantarius subsp. infantarius is a cause for concern as it represents an example of immune mimicry, a form of lantibiotic-specific resistance. The ability of spiFEG to confer protection was apparent when they successfully provided protection to nisin A, F, Z, Q and U when expressed heterologously in the nisin sensitive L. lactis HP host. As a consequence of the studies presented in this thesis, it is likely that strategies will emerge that will facilitate the production of greater levels of lacticin 3147 production and lead to enhanced immunity in lactococcal backgrounds. Alternatively the need for enhanced production could be avoided through the use of antimicrobial combinations. In addition, providing awareness of the threats of the emergence of resistance through immune mimicry can allow researchers to develop strategies to prevent this phenomenon from leading to the dissemination of lantibiotic resistance.
Resumo:
Helicobacter pylori is a gastric pathogen which infects ~50% of the global population and can lead to the development of gastritis, gastric and duodenal ulcers and carcinoma. Genome sequencing of H. pylori revealed high levels of genetic variability; this pathogen is known for its adaptability due to mechanisms including phase variation, recombination and horizontal gene transfer. Motility is essential for efficient colonisation by H. pylori. The flagellum is a complex nanomachine which has been studied in detail in E. coli and Salmonella. In H. pylori, key differences have been identified in the regulation of flagellum biogenesis, warranting further investigation. In this study, the genomes of two H. pylori strains (CCUG 17874 and P79) were sequenced and published as draft genome sequences. Comparative studies identified the potential role of restriction modification systems and the comB locus in transformation efficiency differences between these strains. Core genome analysis of 43 H. pylori strains including 17874 and P79 defined a more refined core genome for the species than previously published. Comparative analysis of the genome sequences of strains isolated from individuals suffering from H. pylori related diseases resulted in the identification of “disease-specific” genes. Structure-function analysis of the essential motility protein HP0958 was performed to elucidate its role during flagellum assembly in H. pylori. The previously reported HP0958-FliH interaction could not be substantiated in this study and appears to be a false positive. Site-directed mutagenesis confirmed that the coiled-coil domain of HP0958 is involved in the interaction with RpoN (74-284), while the Zn-finger domain is required for direct interaction with the full length flaA mRNA transcript. Complementation of a non-motile hp0958-null derivative strain of P79 with site-directed mutant alleles of hp0958 resulted in cells producing flagellar-type extrusions from non-polar positions. Thus, HP0958 may have a novel function in spatial localisation of flagella in H. pylori
Resumo:
Light is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Delta strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.
Resumo:
Constitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, includingChlamydia trachomatis Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogenC. trachomatislacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against aC. trachomatisgenomic library using a conditional-lethallpxHmutantEscherichia colistrain, we have identified an open reading frame (Ct461, renamedlpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function inE. coliand catalyzes the conversion of UDP-DAGn to lipid Xin vitro LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity ofC. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools forC. trachomatisand should be broadly applicable for the functional characterization of other essentialC. trachomatisgenes.IMPORTANCEChlamydia trachomatisis a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of manyChlamydiagenes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against theC. trachomatisgenomic library using a conditional-lethal mutant ofE. coliand identified the missing essential gene in the lipid A biosynthetic pathway, which we designatedlpxG We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activityin vitro Overexpression of LpxG inC. trachomatisleads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating thein vivofunction of LpxG and highlighting the importance of regulated lipid A biosynthesis inC. trachomatis.
Resumo:
Enterotoxigenic Escherichia coli expressing F4 fimbriae are the major cause of porcine colibacillosis and are responsible for significant death and morbidity in neonatal and postweaned piglets. Via the chaperone-usher pathway, F4 fimbriae are assembled into thin, flexible polymers mainly composed of the single-domain adhesin FaeG. The F4 fimbrial system has been labeled eccentric because the F4 pilins show some features distinct from the features of pilins of other chaperone-usher-assembled structures. In particular, FaeG is much larger than other pilins (27 versus approximately 17 kDa), grafting an additional carbohydrate binding domain on the common immunoglobulin-like core. Structural data of FaeG during different stages of the F4 fimbrial biogenesis process, combined with differential scanning calorimetry measurements, confirm the general principles of the donor strand complementation/exchange mechanisms taking place during pilus biogenesis via the chaperone-usher pathway.
Resumo:
Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.
Resumo:
Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.
Resumo:
In this paper, a method for the integration of several numerical analytical techniques that are used in microsystems design and failure analysis is presented. The analytical techniques are categorized into four groups in the discussion, namely the high-fidelity analytical tools, i.e. finite element (FE) method, the fast analytical tools referring to reduced order modeling (ROM); the optimization tools, and probability based analytical tools. The characteristics of these four tools are investigated. The interactions between the four tools are discussed and a methodology for the coupling of these four tools is offered. This methodology consists of three stages, namely reduced order modeling, deterministic optimization and probabilistic optimization. Using this methodology, a case study for optimization of a solder joint is conducted. It is shown that these analysis techniques have mutual relationship of interaction and complementation. Synthetic application of these techniques can fully utilize the advantages of these techniques and satisfy various design requirements. The case study shows that the coupling method of different tools provided by this paper is effective and efficient and it is highly relevant in the design and reliability analysis of microsystems
Resumo:
Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany. Osmotic stress was found to induce biofilm formation in a Staphylococcus aureus mucosal isolate. Inactivation of a global regulator of the bacterial stress response, the alternative transcription factor sigma(B), resulted in a biofilm-negative phenotype and loss of salt-induced biofilm production. Complementation of the mutant strain with an expression plasmid encoding sigma(B) completely restored the wild-type phenotype. The combined data suggest a critical role of sigma(B) in S. aureus biofilm regulation under environmental stress conditions.
Resumo:
The obligate anaerobe Bacteroides fragilis is a normal resident of the human gastrointestinal tract. The clinically derived B. fragilis strain NCTC 9343 produces an extensive array of extracellular polysaccharides (EPS), including antigenically distinct large, small and micro- capsules. The genome of NCTC 9343 encodes multiple gene clusters potentially involved in the biosynthesis of EPS, eight of which are implicated in production of the antigenically variable micro-capsule. We have developed a rapid and robust method for generating marked and markerless deletions, together with efficient electroporation using unmodified plasmid DNA to enable complementation of mutations. We show that deletion of a putative wzz homologue prevents production of high-molecular-mass polysaccharides (HMMPS), which form the micro-capsule. This observation suggests that micro-capsule HMMPS constitute the distal component of LPS in B. fragilis. The long chain length of this polysaccharide is strikingly different from classical enteric O-antigen, which consists of short-chain polysaccharides. We also demonstrate that deletion of a putative wbaP homologue prevents expression of the phase-variable large capsule and that expression can be restored by complementation. This suggests that synthesis of the large capsule is mechanistically equivalent to production of Escherichia coli group 1 and 4 capsules.
Resumo:
RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I–specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.