994 resultados para Combined loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially grouted wider reinforced masonry wall, built predominantly with the use of face shell bedded hollow concrete blocks, is adopted extensively in the cyclonic areas due to its economy. Its out-of-plane response to lateral pressure loading is well definied; however its in-plane shear behaviour is less well understood, in particular it is unclear how the grouted reinforced cores affect the load paths within the wall. For the rational design of the walls, clarification is sought as to whether the wall acts as a composite of unreinforced panels surrounded by the reinforced cores or simply as a continuum embedded with reinforcement at wider spacing. This paper reports four full scale walls tested under in-place cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteretic curves as well as the local responses of some critical zones of the shear walls are presented. It is shown that the aspect ratio of the unreinforced masonry panels surrounded by the reinforced grouted cores within the shear walls have profound effect in ascertaining the behaviour of the shear walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, No-Wait, No-Buffer, Limited-Buffer, and Infinite-Buffer conditions for the flow-shop problem (FSP) have been investigated. These four different buffer conditions have been combined to generate a new class of scheduling problem, which is significant for modelling many real-world scheduling problems. A new heuristic algorithm is developed to solve this strongly NP-hard problem. Detailed numerical implementations have been analysed and promising results have been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.