980 resultados para Collagen type IV
Resumo:
Clear cell odontogenic carcinoma (CCOC) is a rare odontogenic tumor associated with aggressive clinical behavior, metastasis, and low survival. We report a case of CCOC affecting the mandible of a 39-year-old man. The tumor presented a biphasic pattern composed of clear cell nests intermingled with eosinophilic cells and separated by collagenous stroma. Immunoreactivity to cytokeratin (CK), specifically AE1/AE3 and CK 8, 14, 18, and 19 was found, as well as to epithelial membrane antigen (EMA). The tumor cells were negative for S100 protein, CK 13, vimentin, smooth muscle actin, laminin and type IV collagen. Low labeling indices for the proliferation markers Ki-67 and proliferating cell nuclear antigen and to p53 protein might predict a favorable prognosis for the lesion. A surgical resection was performed, followed by adjuvant radiotherapy. A 2-year follow-up has shown no signs of recurrence. The significance of histochemical and immunohistochemical resources in the correct diagnosis of CCOC is analyzed.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Resumo:
Cell Sheets of hASCs (hASCs-CS) have been previously proposed for wound healing applications(1, 2) and despite the concern for production time reduction, the possibility of having these hASCs-CS off-the-shelf is appealing. The goal of this work was to define a cryopreservation methodology allowing to preserve cells viability and the properties CS matrix. hASCs-CS obtained from three different donors were created in UP-cell thermoresponsive dishes(Nunc, Germany) as previously reported(1,2). Different cryopreservation conditions were considered: i)FBS plus DMSO(5% and10%); ii)0.4M of Trehalose plus DMSO (5% and 10%); iii)cryosolution PLL (Akron Biotech, USA); and iv)vitrification. The cryopreservation effect was first assessed for cellular viability by flow cytometry using 7-AAD, and after dissociating the hASCs-CS with collagenase and trypsin-EDTA 0.25%. The expression (RT-PCR) and deposition (western blot and immunocytochemistry) of collagen type I, laminin and fibronectin, and the organization (TEM) of the extracellular matrix was further assessed before and after hASCs-CS cryopreservation to determine a potential effect of the method over matrix composition and integrity. The obtained results confirmed that cell viability is affected by the cryopreservation methodology, as shown before for different CS(3). Interestingly, the matrix properties were not significantly altered and the typical cell sheetâ s easiness of manipulation for transplantation was not lost.
Resumo:
OBJECTIVES: Tissue engineering methods can be applied to regenerate diseased, or congenitally missing, urinary tract tissues. Urinary tract tissue cell cultures must be established in vitro and adequate matrices, acting as cell carriers, must be developed. Although degradable and nondegradable polymer matrices offer adequate mechanical stability, they are not optimal for cell adherence and growth. To overcome this problem, extracellular matrix proteins, permitting cell adhesion and regulation of cell proliferation and differentiation, can be adsorbed to the surface-modified polymer. METHODS: In this study, nondegradable polymer films, poly(ethylene terephthalate), were used as an experimental model. Films were modified by graft polymerization of acrylic acid to subsequently allow collagen type I and III immobilization. The following adhesion, proliferation of human urothelial cells, and induction of their stratification were analyzed. RESULTS: Collagen adsorption on 0.2 microg/cm2 poly(acrylic acid)-grafted polymer films rendered the matrix apt for human urothelial cell adhesion and proliferation. Furthermore, stratification of urothelial cells was demonstrated on these surface-modified matrices. CONCLUSIONS: These results have shown that surface-modified polymer matrices can be used to act as cell carriers for cultured human urothelial cells. Such a cell-matrix construct could be applied in reparative surgery of the urinary tract.
Resumo:
Histological, ultrastructural, morphometric and immunohistochemical data obtained from the study of spleens removed by splenectomy from 34 patients with advanced hepatosplenic schistosomiasis revealed that the main alterations were congestive dilatation of the venous sinuses and diffuse thickening of the splenic cords. Splenic cord thickening was due to an increase of its matrix components, especially type IV collagen and laminin, with the conspicuous absence of interstitial collagens, either of type I or type III. Deposition of interstitial collagens (types I and III) occurred in scattered, small focal areas of the red pulp, but in the outside of the walls of the venous sinuses, in lymph follicles, marginal zone, in the vicinity of fibrous trabeculae and in sidero-sclerotic nodules. However, fibrosis was not a prominent change in schistosomal splenomegaly and thus the designation "fibro-congestive splenomegaly" seems inadequate. Lymph follicles exhibited variable degrees of atrophy, hyperplasia and fibrous replacement, sometimes all of them seen in different follicles of the same spleen and even in the same examined section. Changes in white pulp did not seem to greatly contribute to increasing spleen size and weight, when compared to the much more significant red pulp enlargement.
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
Aim: The aim of the study was to investigate the influence of dietary intake of commercial hydrolyzed collagen (Gelatine Royal ®) on bone remodeling in pre-pubertal children. Methods: A randomized double-blind study was carried out in 60 children (9.42 ± 1.31 years) divided into three groups according to the amount of partially hydrolyzed collagen taken daily for 4 months: placebo (G-I, n = 18), collagen (G-II, n = 20) and collagen + calcium (G-III, n = 22) groups. Analyses of the following biochemical markers were carried out: total and bone alkaline phosphatase (tALP and bALP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), type I collagen carboxy terminal telopeptide, lipids, calcium, 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), thyroid-stimulating hormone, free thyroxin and intact parathormone. Results: There was a significantly greater increase in serum IGF-1 in G-III than in G II (p < 0.01) or G-I (p < 0.05) during the study period, and a significantly greater increase in plasma tALP in G-III than in G-I (p < 0.05). Serum bALP behavior significantly (p < 0.05) differed between G-II (increase) and G-I (decrease). Plasma TRAP behavior significantly differed between G-II and G-I (p < 0.01) and between G-III and G-II (p < 0.05). Conclusion: Daily dietary intake of hydrolyzed collagen seems to have a potential role in enhancing bone remodeling at key stages of growth and development.
Resumo:
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.
Resumo:
Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
Purpose: To investigate the molecular involvement of PTEN, a tumor suppressor gene, in a case of cellular pigmented choroidal Schwannoma in a patient with hamartomatous syndrome due to heterozygous PTEN germline mutation. Methods: Histopathological, immunohistochemical, and electron microscopy analyses were performed by standard procedures. Paraffin-embedded samples of normal and tumor eye tissues were collected and DNA was extracted. A 145 bp region flanking the heterozygous c.406T>C mutation in exon 5 of PTEN was amplified by PCR and sequenced. To evaluate the allelic status of PTEN in the tumor sample, we cloned different PCR products in E. coli using a TA cloning procedure. Results: Histopathology demonstrated a posterior choroidal mass measuring 1.3 x 1.6 x 1.4 cm. The tumor was composed by fascicles of spindle cells with wavy cytoplasm. No Verrocay bodies could be identified. Scattered histiocytes with clear cytoplasm were present. By immunohistochemistry, the cells were expressing S100 and focally Melan A proteins. Pericellular type IV collagen could be demonstrated. Interlacing cytoplasmic processes covered by thick basement membrane could be found by electron microscopy as well as few premelanosomes. Moderate PTEN expression by immunohistochemistry was identified in some cells. As expected, the germline mutation could be detected by DNA sequencing in both the paraffin-embedded normal and tumor eye tissues. Analysis of 33 E. coli colonies bearing clones from the tumor eye tissue DNA surprisingly revealed that most of them contained the PTEN wild-type allele (29 vs. 4, Fisher's test p-value = 0.002). Conclusions: This is the first reported case of choroidal cellular Schwannoma arising in the context of a PTEN hamartomatous syndrome. Allelic analysis of PTEN in the tumor suggests a statistically-significant partial loss of heterozygozity in favor of the wild-type allele. Our findings are in clear contrast with what is usually observed in cancer tissues, for which mutated alleles of tumor suppressor genes are usually brought to homozygosity. Similar results were previously reported in human non-Hodgkin's lymphomas, displaying an overexpression of the wild-type form of the tumor suppressor gene p53. We are in the process of investigating additional DNA derived from other fresh and paraffin-embedded tissues from the patient, in order to gain insights on the molecular bases of PTEN involvement in this rare choroidal Schwannoma.
Resumo:
A few family studies have evaluated HLA antigens in Alport's syndrome; however, there are no large population studies. In the present report, we studied 40 unrelated white patients with Alport's syndrome seen at the Unit of Renal Transplantation, Faculty of Medicine of Ribeirão Preto, São Paulo, Brazil. HLA-A, -B, -DR and -DQ antigens were typed using a complement-dependent microlymphocytotoxicity assay. A control white population (N = 403) from the same geographical area was also typed for HLA antigens. Although the frequencies of HLA-A and -B antigens of patients were not statistically different from controls, the frequency of HLA-DR2 antigen observed in patients (65%) was significantly increased in relation to controls (26%; P<0.001). The relative risk and etiologic fraction for HLA-DR2 antigen were 5.2 and 0.525, respectively. Although few immunological abnormalities have been shown in Alport's syndrome, in this report we emphasize the association of HLA molecules and Alport's syndrome. Besides the well-known inherited molecular defects encoded by type IV collagen genes in Alport's syndrome, the major histocompatibility alleles may be in linkage disequilibrium with these defective collagen genes
Resumo:
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
Resumo:
We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.