858 resultados para Cognitive processes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the history of psychology research, more attention had been focused on the relation between local processing and global processing. For the global information and the local information, which is processed earlier? And which is processed faster? Precedence of the global over the local level in visual perception has been well established by Navon with compound stimuli, and Navon’s original study gave rise to many publications, including replications, generalization to other kinds of stimuli (nonverbal material, digits), populations (infants, children, brain-damaged subjects), and tasks (lateral visual hemifield presentation, copy drawing, memory recognition, and recall), and triggered some debate about the conditions in which global precedence is and is not observed (number, size, sparsity, and goodness of the stimuli, exposure duration, etc.). However, whether there is a global advantage or precedence in other cognitive processes was less tested. Most researches had suggested that there was a functional equivalency between visual perception and visual image processing. However, it’s still unknown whether there will be a global advantage on mental rotation. In the present study, we combined the mental rotation task with the compound stimuli to explore whether the global or local advantage also existed at the mental imagery transformation stages. In two pilot studies, the perceptual global precedence was found to be present in a normal/mirror-image judgment task when the stimuli exposure time was short; while the stimuli exposure time was prolonged (stimuli kept available till subjects’ response) the perceptual global precedence was showed to be eliminated. In all of the subsequent experiments, stimili would be presented till subjects’ response. Then mental rotation was added in normal/mirror-image judgment (some of the stimuli were rotated to certain angles from upright) in normal experiments, experiment 1 and 2 observed a global advantage on mental rotation both with a focused-attention design (Experiment 1) and divided-attention design (Experiment 2). Subjects’ reaction times were increased with rotation angles, and the accuracy was decreased with rotation angles, suggesting that subject need a mental rotation to make a normal/mirror judgment. The most important results were that subjects’ response to global rotation was faster than that to local rotation. The analysis of slope of rotation further indicated that, to some extend, the speed of global rotation was faster than that of local rotation. These results suggest a global advantage on mental rotation. Experiment 3 took advantage of the high temporal resolution of event-related potentials to explore the temporal pattern of global advantage on mental rotation. Event-related potential results indicated the parietal P300 amplitude was inversely related to the character orientation, and the local rotation task delayed the onset of the mental-rotation-related negativity at parietal electrodes. None clear effect was found for occipital N150. All these results suggested that the global rotation was not only processed faster than local rotation, but also occurred earlier than local rotation. Experiments 4 and 5 took the effect size of global advantage as the main dependent variable, and visual angle and exposure duration of the stimuli as independent variables, to examine the relationship between perceptual global precedence and global advantage on mental rotation. Results indicated that visual angle and exposure duration did not influence the effect size of global advantage on mental rotation. The global advantage on mental rotation and the perceptual global advantage seemed to be independent but their effects could be accumulated at some condition. These findings not only contribute to revealing a new processing property of mental rotation, but also deepen our understanding of the problem of global/local processing and shed light on the debate on locus of global precedence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to explore whether the CPS (Closure Positive Shift) which reflected prosodic processing will be elicited when listeners perceived different hierarchical prosodic boundaries in Chinese sentence and discourse (Quatrain). In addiction, the similarity and difference in amplitude, onset latency and scalp distribution between these CPS were investigated. The nature of the CPS and its relationship to acoustic parameters was also explored systematically. The main results and conclusions of the present study were: (1) Phonological phrase boundaries and intonational phrase boundaries in Chinese sentences both elicited the CPS; however, phonological word boundaries can't evoke it. The CPS induced by phonological phrase boundaries was earlier than the one related to intonational phrase boundaries in onset latency, and the amplitude was also somewhat lower. When the pauses in the vicinity of these two boundaries were removed, the onset latency difference disappeared while amplitude in the new conditions was also lower. This indicates that whenever listeners segment sentence into phrases, the CPS will be elicited. Besides, pause was not the decisive factor to elicit the CPS, but can modify its onset latency and amplitude effectively. (2) The different hierarchical prosodic boundaries in seven character quatrain including phonological phrase boundaries, intonational phrase boundaries and sentence pair boundaries elicited the CPS respectively. Furthermore, just like in the sentence level, onset latency of the CPS induced by the prosodic boundaries in the discourse was also influenced by the length of pause: the shorter the pause was, the earlier the onset latency. For the comparison between the CPS evoked by the same and different hierarchical prosodic boundaries, its amplitude was influenced by the extent to which prosodic representations were activated. Thus, the condition of the CPS elicitation was extended to the prosodic bounaries in discourse, and further indicated that it was influenced by acoustic parameters. (3) No matter what task the participants completed, just like word detection or rythem matching task, the CPS will be evoked. However, its amplitude was larger in the anterior region, when listeners completed the word detection task which needed more attention and higher load of working memory. The present result indicated that the elicitation of the CPS was not influenced by the task the participants completed, but different task influence its scalp distribution. (4) The final syllable of the sentence and quatrain can't elicit the CPS, but a P300-like positive component. Although the scalp distribution was similar to the CPS, it was much higher in amplitude. The present result suggested that only the prosodic boundaries reflecting not only the closure of the former prosodic unit but also integrating the later one will elicit the CPS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 7 experiments, the authors examined the perceptual and cognitive processes used to track the locations of objects during locomotion. Participants learned locations of 9 objects on the outer part of a turntable from a single viewpoint while standing in the middle of the turntable. They subsequently pointed to objects while facing the learning heading and a new heading, using imagined headings that corresponded to their current actual body heading and the other actual heading. Participants in 6 experiments were asked to imagine that the objects moved with them as they turned and were shown or only told that the objects would move with them; in Experiment 7, participants were shown that objects could move with them but were asked to ignore this as they turned. Results showed that participants tracked object locations as though the objects moved with them when shown but not when told about the consequences of their locomotion. Once activated, this processing mode could not be suppressed by instructions. Results indicated that people process object locations in a body- or an environment-stabilized manner during locomotion, depending on the perceptual consequences of locomotion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report mainly focused on methodology of spatiotemporal patterns (STP) of cognitive potentials or event-related potentials (ERP). The representation of STP of brain wave is an important issue in the research of neural assemblies. This paper described methods of parametric 3D head or brain modeling and its corresponding interpolation for functional imaging based on brain waves. The 3D interpolation method is an extension of cortical imaging technique. It can be used with transformed domain features of brain wave on realistic head or brain models. The simulating results suggests that it is a better method in comparison with the global nearest neighbor technique. A stable and definite STP of brainwave referred as microstate may become basic element for comprehending sophisticated cognitive processes. Fuzzy c-mean algorithm was applied to segmentation STPs of ERP into microstates and corresponding membership functions. The optimal microstate number was estimated with both the trends of objective function against increasing clustering number and the decorrelation technique base don microstate shape similarity. Comparable spatial patterns may occur at different moments in time with fuzzy indices and thus the serial processing limit generated from behavioral methods has been break through. High-resolution frequency domain analysis was carried out with multivariate autoregressive model. Bases on a 3D interpolation mentioned above, visualization of dynamical coordination of cerebral network was realized with magnitude-squared partial coherence. Those technique illustrated with multichannel ERP of 9 subjects when they undertook Strop task. Stroop effects involves several regions during post-perception stage with technique of statistical parameter mapping based F-test [SPM(F)]. As SPM(F) suggested task effects occurred within 100 ms after stimuli presentation involved several sensory regions, it may reflect the top-down processing effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to examine the cognitive and neural mechanism underlying the serial position effects using cognitive experiments and ERPs(the event related potentials), for 11 item lists in very short-term and the continuous-distractor paradigm with Chinese character. The results demonstrated that when the length of list was 11 Chinese character, and the presentation time, the item interval and the retention interval was 400ms, the primacy effect and recency effect belong to the associative memory and absolute memory respectively. The retrieval of the item at the primacy part depended mainly on the context cues, but the retrieval of the item at the recency part depended mainly on the memory trace. The same results was concluded in the continuous-distractor paradigm (the presentation time was 1sec, the item interval is 12sec, and the retention interval was 30sec). Cognitive results revealed the robust serial position effects in the continuous-distractor paradigm. The different retrieval process between items at the primacy part and items at the recency part of the serial position curve was found. The behavioral responses data of ERP illustrated that the responses for the prime and recent items differed neither in accuracy nor reaction time, the retrieval time for the items at the primacy part was longer than that for the items at the recency part. And the accuracy of retrieval for the primacy part item was lower than that for the recency part items. That meant the retrieval of primacy part items needed more cognitive processes. The recent items, compared with the prime items, evoked ERPs that were more positive, this enhanced positivity occurred in a positive component peaking around 360ms. And for the same retrieval direction (forward or backward), the significant positive component difference between the retrieval for prime items and the retrieval for recent items was found. But there was no significant difference between the forward and backward retrieval at both the primacy and recency part of the serial position curve. These revealed the two kind of retrieval (forward and backward) at the same part of the serial position curve belonged to the same property. These findings fit more closely with the notion of the distinct between the associative memory and the absolute memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to isolate a single sound source among concurrent sources and reverberant energy is necessary for understanding the auditory world. The precedence effect describes a related experimental finding, that when presented with identical sounds from two locations with a short onset asynchrony (on the order of milliseconds), listeners report a single source with a location dominated by the lead sound. Single-cell recordings in multiple animal models have indicated that there are low-level mechanisms that may contribute to the precedence effect, yet psychophysical studies in humans have provided evidence that top-down cognitive processes have a great deal of influence on the perception of simulated echoes. In the present study, event-related potentials evoked by click pairs at and around listeners' echo thresholds indicate that perception of the lead and lag sound as individual sources elicits a negativity between 100 and 250 msec, previously termed the object-related negativity (ORN). Even for physically identical stimuli, the ORN is evident when listeners report hearing, as compared with not hearing, a second sound source. These results define a neural mechanism related to the conscious perception of multiple auditory objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This special issue of Cortex focuses on the relative contribution of different neural networks to memory and the interaction of 'core' memory processes with other cognitive processes. In this article, we examine both. Specifically, we identify cognitive processes other than encoding and retrieval that are thought to be involved in memory; we then examine the consequences of damage to brain regions that support these processes. This approach forces a consideration of the roles of brain regions outside of the frontal, medial-temporal, and diencephalic regions that form a central part of neurobiological theories of memory. Certain kinds of damage to visual cortex or lateral temporal cortex produced impairments of visual imagery or semantic memory; these patterns of impairment are associated with a unique pattern of amnesia that was distinctly different from the pattern associated with medial-temporal trauma. On the other hand, damage to language regions, auditory cortex, or parietal cortex produced impairments of language, auditory imagery, or spatial imagery; however, these impairments were not associated with amnesia. Therefore, a full model of autobiographical memory must consider cognitive processes that are not generally considered 'core processes,' as well as the brain regions upon which these processes depend.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments that demonstrated a role for the substantia nigra in eye movements have played an important role in our understanding of the function of the basal ganglia in behavior more broadly. In this review we explore more recent experiments that extend the role of the substantia nigra pars reticulata from a simple gate for eye movements to include a role in cognitive processes for eye movements. We review recent evidence suggesting that basal ganglia nuclei beyond the substantia nigra may also play a role in eye movements and the cognitive events leading up to the production of eye movements. We close by pointing out some unresolved questions in our understanding of the relationship of basal ganglia nuclei and eye movements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impulse control, an executive process that restrains inappropriate actions, is impaired in numerous psychiatric conditions. This thesis reports three experiments that utilized a novel animal model of impulse control, the response inhibition (RI) task, to examine the substrates that underlie learning this task. In the first experiment, rats were trained to withhold responding on the RI task, and then euthanized for electrophysiological testing. Training in the RI task increased the AMPA/NMDA ratio at the synapses of pyramidal neurons in the prelimbic, but not infralimbic, region of the medial prefrontal cortex. This enhancement paralleled performance as subjects underwent acquisition and extinction of the inhibitory response. AMPA/NMDA was elevated only in neurons that project to the ventral striatum. Thus, this experiment identified a synaptic correlate of impulse control. In the second experiment, a separate group of rats were trained in the RI task prior to electrophysiological testing. Training in the RI task produced a decrease in membrane excitability in prelimbic, but not infralimbic, neurons as measured by maximal spiking evoked in response to increasing current injection. Importantly, this decrease was strongly correlated with successful inhibition in the task. Fortuitously, subjects trained in an operant control condition showed elevated infralimbic, but not prelimbic, excitability, which was produced by learning an anticipatory signal that predicted imminent reward availability. These experiments revealed two cellular correlates of performance, corresponding to learning two different associations under distinct task conditions. In the final experiment, rats were trained on the RI task under three conditions: Short (4-s), long (60-s), or unpredictable (1-s to 60-s) premature phases. These conditions produced distinct errors on the RI task. Interestingly, amphetamine increased premature responding in the short and long conditions, but decreased premature responding in the unpredictable condition. This dissociation may arise from interactions between amphetamine and underlying cognitive processes, such as attention, timing, and conditioned avoidance. In summary, this thesis showed that learning to inhibit a response produces distinct synaptic, cellular, and pharmacological changes. It is hoped that these advances will provide a starting point for future therapeutic interventions of disorders of impulse control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with schizophrenia display numerous cognitive deficits, including problems in working memory, time estimation, and absolute identification of stimuli. Research in these fields has traditionally been conducted independently. We examined these cognitive processes using tasks that are structurally similar and that yield rich error data. Relative to healthy control participants (n = 20), patients with schizophrenia (n = 20) were impaired on a duration identification task and a probed-recall memory task but not on a line-length identification task. These findings do not support the notion of a global impairment in absolute identification in schizophrenia. However, the authors suggest that some aspect of temporal information processing is indeed disturbed in schizophrenia.