989 resultados para Co-extractable Compounds
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The compounds [Fe(ch)(CO)(2)PP3] (1) (ch = chalcone) and [Fe(sba)(CO)(2)PPh3] (2) (sba = sorbic acid) were prepared by irradiating the tetracarbonyltriphenylphosphineiron(0) complex in benzene in the presence of ch or sba. The compounds were characterized by infrared and P-31 NMR spectroscopies. Their electrochemical behavior was investigated by cyclic voltammetry and the results suggest that their oxidations occur by more than one electrochemical step, producing free ch and sba, free PPh3 and solvated Fe(III). It was observed that sba ligand contributes more effectively to the stabilization of metal center in these complexes, the X-ray crystal and molecular structures of 1 and 2 were determined; it was shown that the Fe atom adopts a distorted octahedral coordinated geometry in which three of the sites are occupied by the ch or sba ligand. The [Fe(ch)(CO)(2)PPh3] complex is a monomer and the unit cell of complex 2 contains exist two identical and crystallographically independent molecules of [Fe(sba)(CO)(2)PPh3] which are linked by short hydrogen bonds O-H . . .O (C) 2001 Published by Elsevier B.V. Ltd.
Resumo:
Reactions of Hg(CH3COO)(2) with [Fe(CO)(5)] in MeOH and EtOH lead to the compounds Hg[Fe(COOR)(CO)(4)](2) (I for R = CH3 and II for R = C2H5). Crystals of I are triclinic, P (1) over bar, with a = 6.272(2), b = 6.441(3), c = 11.703(4) Angstrom, a = 92.94(3)degrees, beta = 103.77(3)degrees, gamma = 96.10(2)degrees, and Z = 1. Crystals of II are tetragonal, I4(1)/a, with a = 17.906(3) Angstrom, c = 12.756(2) Angstrom, and Z = 8. The geometry around Hg is linear for compound I and approximately linear for compound II. The Hg-Fe distances are 2.5716(8) and 2.575(4) Angstrom for compounds I and II, respectively. The geometry around the Fe in both compounds is approximately octahedral. The carboalkoxy group is cis to Hg in both compounds with Fe-C distances equal to 2.034(6) and 2.05(4) Angstrom for compounds I and II, respectively.
Resumo:
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni) = 0.2-0.5 in the nickel-based solid solution ErNixMn1-xO3, while it can be extended up to x(Co) = 0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1-xO3, a critical concentration x(crit)(Ni) = 1/3 separates two regimes: spin-canted AF interactions predominate at x < x(crit), while the ferromagnetic behavior is enhanced for x > x(crit). Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at T-c, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T-1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50 = Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Reactions of [WC1(CO)(3)(bipy)(HgCl)], [bipy = 2,2 -bipyridine], with thioureas were performed giving compounds of the type [WCl(CO)(3)(bipy)(HgCl)L], [L = thiourea (tu); N-methylthiourea (mtu); N,N-dimethyithiourea (dmtu)] in which the coordination sphere of the tungsten atom remained unchanged. The coordination of the thioureas to mercury atom was proved to occur in accord to infrared spectra, through the sulphur atom.
Resumo:
Solid-state M-2-Cl-BP, where M stands for Mn, Fe, Co, Ni, Cu, Zn and Pb and 2-Cl-BP is 2-chlorobenzylidenepyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
M(CO)(4)(N-N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)(4)(N-N)(CuCl)], M = W, Mo; N-N = 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)(4)(N-N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)(4)(N-N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four m ( CO) band patterns of the precursors. The u.v.-vis. spectral data for precursors and products showed bands associated with pi --> pi* (nitrogen ligands), d-->d (intrametal), as well as MLCT d-->pi* (nitrogen ligands) and MLCT d --> pi*(CO) transitions. The [M(CO)(4)(N-N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)(4)(N-N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X- ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.
Resumo:
The compounds [Fe(bda)(CO)(2)L] and [Fe(ch)(CO)(2)L], (bda=benzylideneacetone; ch=chalcone; L=CO, PPh3) were investigated by thermogravimetry and derivative thermogravimetry (TG and DTG). The fragmentation patterns suggest that the iron atom protects the enone fragment, so that the organic ligands break up with the loss of the pendant aromatic rings.
Resumo:
This work reports on the study about the luminescence behavior of Eu3+-O2- associates in Sr2SiO4 doped with Eu3+, or simultaneously doped with Eu3+ and Zn2+ ions, where the Zn2+ doping ion acts as a charge compensating agent. Both Sr2SiO4:Eu3+ and Sr2SiO4:Eu3+,Zn2+ emission spectra show two types D-5(0)-->F-7(0) type transitions, one type related to Eu3+ in the Sr2+ Site, at 577 and 580 nm and the other one related to Eu3+-O2- associates, at 574 nm. Excitation spectra present two CT bands at 275 and 324 nm related to each emission center, respectively. Comparing the relative intensities between the emission spectra, the 0-->0 transition at 574 nm assigned to Eu3+-O2- associates in the Sr2SiO4:Eu3+ emission spectrum is much more intense than the same transition in the Sr2SiO4:Eu3+,Zn2+ emission spectrum. Moreover, in the Sr2SiO4:Eu3+ excitation spectrum, the intensity ratio between the CT band related to the Eu3+-O2- emission center and Eu3+ F-7-->L-5(6) transition is also larger than in the Sr2SiO4:Eu3+,Zn2+ one. Therefore, the presence of Zn2+ species provides an extra charge compensating mechanism, which decreases the formation of Eu3+-O2- associates. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The magnetic moment using self-consistent spin-polarized energy band calculations of Fe3Al and Fe2CoAl Heusler phases are presented. These results are compared with the experimental values obtained from the magnetization curves of these materials. (C) 2004 Elsevier B.V. All rights reserved.