890 resultados para Cloud Fraction
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
Lunacloud is a cloud service provider with offices in Portugal, Spain, France and UK that focus on delivering reliable, elastic and low cost cloud Infrastructure as a Service (IaaS) solutions. The company currently relies on a proprietary IaaS platform - the Parallels Automation for Cloud Infrastructure (PACI) - and wishes to expand and integrate other IaaS solutions seamlessly, namely open source solutions. This is the challenge addressed in this thesis. This proposal, which was fostered by Eurocloud Portugal Association, contributes to the promotion of interoperability and standardisation in Cloud Computing. The goal is to investigate, propose and develop an interoperable open source solution with standard interfaces for the integrated management of IaaS Cloud Computing resources based on new as well as existing abstraction libraries or frameworks. The solution should provide bothWeb and application programming interfaces. The research conducted consisted of two surveys covering existing open source IaaS platforms and PACI (features and API) and open source IaaS abstraction solutions. The first study was focussed on the characteristics of most popular open source IaaS platforms, namely OpenNebula, OpenStack, CloudStack and Eucalyptus, as well as PACI and included a thorough inventory of the provided Application Programming Interfaces (API), i.e., offered operations, followed by a comparison of these platforms in order to establish their similarities and dissimilarities. The second study on existing open source interoperability solutions included the analysis of existing abstraction libraries and frameworks and their comparison. The approach proposed and adopted, which was supported on the conclusions of the carried surveys, reuses an existing open source abstraction solution – the Apache Deltacloud framework. Deltacloud relies on the development of software driver modules to interface with different IaaS platforms, officially provides and supports drivers to sixteen IaaS platform, including OpenNebula and OpenStack, and allows the development of new provider drivers. The latter functionality was used to develop a new Deltacloud driver for PACI. Furthermore, Deltacloud provides a Web dashboard and REpresentational State Transfer (REST) API interfaces. To evaluate the adopted solution, a test bed integrating OpenNebula, Open- Stack and PACI nodes was assembled and deployed. The tests conducted involved time elapsed and data payload measurements via the Deltacloud framework as well as via the pre-existing IaaS platform API. The Deltacloud framework behaved as expected, i.e., introduced additional delays, but no substantial overheads. Both the Web and the REST interfaces were tested and showed identical measurements. The developed interoperable solution for the seamless integration and provision of IaaS resources from PACI, OpenNebula and OpenStack IaaS platforms fulfils the specified requirements, i.e., provides Lunacloud with the ability to expand the range of adopted IaaS platforms and offers a Web dashboard and REST API for the integrated management. The contributions of this work include the surveys and comparisons made, the selection of the abstraction framework and, last, but not the least, the PACI driver developed.
Resumo:
Comunicação apresentada na CAPSI 2011 - 11ª Conferência da Associação Portuguesa de Sistemas de Informação – A Gestão de Informação na era da Cloud Computing, Lisboa, ISEG/IUL-ISCTE/, 19 a 21 de Outubro de 2011.
Resumo:
O desenvolvimento de aplicações para dispositivos móveis já não é uma área recente, contudo continua a crescer a um ritmo veloz. É notório o avanço tecnológico dos últimos anos e a crescente popularidade destes dispositivos. Este avanço deve-se não só à grande evolução no que diz respeito às características destes dispositivos, mas também à possibilidade de criar aplicações inovadoras, práticas e passíveis de solucionar os problemas dos utilizadores em geral. Nesse sentido, as necessidades do quotidiano obrigam à implementação de soluções que satisfaçam os utilizadores, e nos dias de hoje, essa satisfação muitas vezes passa pelos dispositivos móveis, que já tem um papel fundamental na vida das pessoas. Atendendo ao aumento do número de raptos de crianças e à insegurança que se verifica nos dias de hoje, as quais dificultam a tarefa de todos os pais/cuidadores que procuraram manter as suas crianças a salvo, é relevante criar uma nova ferramenta capaz de os auxiliar nesta árdua tarefa. A partir desta realidade, e com vista a cumprir os aspetos acima mencionados, surge assim esta dissertação de mestrado. Esta aborda o estudo e implementação efetuados no sentido de desenvolver um sistema de monitorização de crianças. Assim, o objetivo deste projeto passa por desenvolver uma aplicação nativa para Android e um back-end, utilizando um servidor de base de dados NoSQL para o armazenamento da informação, aplicando os conceitos estudados e as tecnologias existentes. A solução tem como principais premissas: ser o mais user-friendly possível, a otimização, a escalabilidade para outras situações (outros tipos de monitorizações) e a aplicação das mais recentes tecnologias. Assim sendo, um dos estudos mais aprofundados nesta dissertação de mestrado está relacionado com as bases de dados NoSQL, dada a sua importância no projeto.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Neste trabalho foi considerada a possibilidade de incorporar serviços remotos, normalmente associados a serviços web e cloud computing, numa solução local que centralizasse os vários serviços num único sistema e permitisse aos seus utilizadores consumir e configurar os mesmos, quer a partir da rede local, quer remotamente a partir da Internet. Desta forma seria possível conciliar o acesso a partir de qualquer local com internet, característico nas clouds, com a simplicidade de concentrar num só sistema vários serviços que são por norma oferecidos por entidades distintas e ainda permitir aos seus utilizadores o controlo e configuração sobre os mesmos. De forma a validar que este conceito é viável, prático e funcional, foram implementadas duas componentes. Um cliente que corre nos dispositivos dos utilizadores e que proporciona a interface para consumir os serviços disponíveis e um servidor que irá conter e prestar esses serviços aos clientes. Estes serviços incluem lista de contactos, mensagens instantâneas, salas de conversação, transferência de ficheiros, chamadas e conferências de voz e vídeo, pastas remotas, pastas sincronizadas, backups, pastas partilhadas, VoD (Video-on Demand) e AoD (Audio-on Demand). Para o desenvolvimento do cliente e do servidor foi utilizada a framework Qt que recorre à linguagem de programação C++ e ao conjunto de bibliotecas que possui, para o desenvolvimento de aplicações multiplataforma. Para as comunicações entre clientes e servidor, foi utilizado o protocolo XMPP (Extensible Messaging and Presence Protocol), pela forma da biblioteca qxmpp e do servidor XMPP ejabberd. Pelo facto de conter um conjunto de centenas de extensões atualmente ativas que auferem funcionalidades como salas de conversação, transferências de ficheiros e até estabelecer sessões multimédia, graças à sua flexibilidade permitiu ainda a criação de extensões personalizada necessárias para algumas funcionalidades que se pretendeu implementar. Foi ainda utilizado no servidor a framework ffmpeg para suportar algumas funcionalidades multimédia. Após a implementação do cliente para Windows e Linux, e de implementar o servidor em Linux foi realizado um conjunto de testes funcionais para perceber se as funcionalidades e seus mecanismos funcionam corretamente. No caso onde a análise da performance e do consumo de recursos era importante, foram realizados testes de performance e testes de carga.
Resumo:
Com base no relatório de Projecto III para o Programa Doutoral em Avaliação de Tecnologia (2011-2012)
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática