935 resultados para Climate change adaptation
Resumo:
Climate change is projected to lead to shift of forest types leading to irreversible damage to forests by rendering several species extinct and potentially affecting the livelihoods of local communities and the economy. Approximately 47% and 42% of tropical dry deciduous grids are projected to undergo shifts under A2 and B2 SRES scenarios respectively, as opposed to less than 16% grids comprising of tropical wet evergreen forests. Similarly, the tropical thorny scrub forest is projected to undergo shifts in majority of forested grids under A2 (more than 80%) as well as B2 scenarios (50% of grids). Thus the forest managers and policymakers need to adapt to the ecological as well as the socio-economic impacts of climate change. This requires formulation of effective forest management policies and practices, incorporating climate concerns into long-term forest policy and management plans. India has formulated a large number of innovative and progressive forest policies but a mechanism to ensure effective implementation of these policies is needed. Additional policies and practices may be needed to address the impacts of climate change. This paper discusses an approach and steps involved in the development of an adaptation framework as well as policies, strategies and practices needed for mainstreaming adaptation to cope with projected climate change. Further, the existing barriers which may affect proactive adaptation planning given the scale, accuracy and uncertainty associated with assessing climate change impacts are presented.
Resumo:
Due to large scale afforestation programs and forest conservation legislations, India's total forest area seems to have stabilized or even increased. In spite of such efforts, forest fragmentation and degradation continues, with forests being subject to increased pressure due to anthropogenic factors. Such fragmentation and degradation is leading to the forest cover to change from very dense to moderately dense and open forest and 253 km(2) of very dense forest has been converted to moderately dense forest, open forest, scrub and non-forest (during 2005-2007). Similarly, there has been a degradation of 4,120 km(2) of moderately dense forest to open forest, scrub and non-forest resulting in a net loss of 936 km(2) of moderately dense forest. Additionally, 4,335 km(2) of open forest have degraded to scrub and non-forest. Coupled with pressure due to anthropogenic factors, climate change is likely to be an added stress on forests. Forest sector programs and policies are major factors that determine the status of forests and potentially resilience to projected impacts of climate change. An attempt is made to review the forest policies and programs and their implications for the status of forests and for vulnerability of forests to projected climate change. The study concludes that forest conservation and development policies and programs need to be oriented to incorporate climate change impacts, vulnerability and adaptation.
Resumo:
We examine the potential for adaptation to climate change in Indian forests, and derive the macroeconomic implications of forest impacts and adaptation in India. The study is conducted by integrating results from the dynamic global vegetation model IBIS and the computable general equilibrium model GRACE-IN, which estimates macroeconomic implications for six zones of India. By comparing a reference scenario without climate change with a climate impact scenario based on the IPCC A2-scenario, we find major variations in the pattern of change across zones. Biomass stock increases in all zones but the Central zone. The increase in biomass growth is smaller, and declines in one more zone, South zone, despite higher stock. In the four zones with increases in biomass growth, harvest increases by only approximately 1/3 of the change in biomass growth. This is due to two market effects of increased biomass growth. One is that an increase in biomass growth encourages more harvest given other things being equal. The other is that more harvest leads to higher supply of timber, which lowers market prices. As a result, also the rent on forested land decreases. The lower prices and rent discourage more harvest even though they may induce higher demand, which increases the pressure on harvest. In a less perfect world than the model describes these two effects may contribute to an increase in the risk of deforestation because of higher biomass growth. Furthermore, higher harvest demands more labor and capital input in the forestry sector. Given total supply of labor and capital, this increases the cost of production in all the other sectors, although very little indeed. Forestry dependent communities with declining biomass growth may, however, experience local unemployment as a result.
Resumo:
Toxic-waste associated with coastal brownfield sites can pose serious risks to human and environmental health. In light of anticipated sea-level rise (SLR) due to global climate change, coastal brownfields require heightened attention. The primary intent of this study is to pose questions and encourage discussion of this problem among policy makers. Impacts from SLR on coastal zones are examined within a brownfield policy framework and, current coastal brownfield policy discussions with respect to SLR are also examined. (PDF contains 4 pages)
Resumo:
The Quedan and Rural Credit Guarantee Corporation (Quedancor) of the Philippine Department of Agriculture has the critical responsibility of providing and improving credit assistance to fishers, it also has the task of helping its beneficiaries meet the repayment obligations of their loans. One reason for defaults can be attributed to the devastating impact of natural calamities. Schemes in place are still insufficient to help safeguard lending programs and operations from non-repayment of loans due to production losses and damages to personal properties.(PDF contains 5 pages) Natural calamities include the uncertainties and vagaries of weather and climate that bring about typhoons, floods, and drought; earthquakes; volcanic eruption as well as pests and diseases that affect the productivity of fisheries. When natural calamities occur, small fishers are unable to pay their loans from Quedancor, moreover they have difficulty renewing their loan applications from Quedancor or accessing credit from other sources. Failure to access credit could disable them to continue venture on fishing activities and could eventually jeopardize the welfare of their entire household. The inability of creditors to pay their loans and meet their obligations also impair, to a large extent, the financial operation and viability of the lending institutions. Risk management schemes currently employed include price stabilization measures, targeted relief` to typhoons and drought victims, and crop insurance systems, to name a few. Some of these schemes are becoming very expensive to implement. Moreover, they fail to enable fishers regain sufficient resources so that they may continue production.
Resumo:
The Mekong River delta of Vietnam supports a thriving aquaculture industry but is exposed to the impacts of climate change. In particular, sea level rise and attendant increased flooding (both coastal and riverine) and coastal salinity intrusion threaten the long-term viability of this important industry. This working paper summarizes an analysis of the economics of aquaculture adaptation in the delta, focusing on the grow-out of two exported aquaculture species—the freshwater striped catfish and the brackish-water tiger shrimp. The analysis was conducted for four pond-based production systems: catfish in the inland and coastal provinces and improved extensive and semi-intensive/intensive shrimp culture.
Resumo:
This thesis argues that examining the attitudes, perceptions, behaviors, and knowledge of a community towards their specific watershed can reveal their social vulnerability to climate change. Understanding and incorporating these elements of the human dimension in coastal zone management will lead to efficient and effective strategies that safeguard the natural resources for the benefit of the community. By having healthy natural resources, ecological and community resilience to climate change will increase, thus decreasing vulnerability. In the Pacific Ocean, climate and SLR are strongly modulated by the El Niño Southern Oscillation. SLR is three times the global average in the Western Pacific Ocean (Merrifield and Maltrud 2011; Merrifield 2011). Changes in annual rainfall in the Western North Pacific sub‐region from 1950-2010 show that islands in the east are getting much less than in the past, while the islands in the west are getting slightly more rainfall (Keener et al. 2013). For Guam, a small island owned by the United States and located in the Western Pacific Ocean, these factors mean that SLR is higher than any other place in the world and will most likely see increased precipitation. Knowing this, the social vulnerability may be examined. Thus, a case-study of the community residing in the Manell and Geus watersheds was conducted on the island of Guam. Measuring their perceptions, attitudes, knowledge, and behaviors should bring to light their vulnerability to climate change. In order to accomplish this, a household survey was administered from July through August 2010. Approximately 350 surveys were analysed using SPSS. To supplement this quantitative data, informal interviews were conducted with the elders of the community to glean traditional ecological knowledge about perceived climate change. A GIS analysis was conducted to understand the physical geography of the Manell and Geus watersheds. This information about the human dimension is valuable to CZM managers. It may be incorporated into strategic watershed plans, to better administer the natural resources within the coastal zone. The research conducted in this thesis is the basis of a recent watershed management plan for the Guam Coastal Management Program (see King 2014).
Resumo:
Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.
Resumo:
With scientific consensus supporting a 4oC increase in global mean temperature over the next century and increased frequency of severe weather events, adaptation to climate change is critical. Given the dynamic and complex nature of climate change, a transdisciplinary approach toward adaptation can create an environment that supports knowledge sharing and innovation, improving existing strategies and creating new ones. The Ontario wine industry provides a case study to illustrate the benefits of this approach. We describe the formation and work of the Ontario Grape and Wine Research Network within this context, and present some preliminary results to highlight the opportunities for innovation that will drive the successful adaption of the Ontario grape and wine industry.
Resumo:
Les facteurs climatiques ainsi bien que les facteurs non-climatiques doivent être pris en considération dans le processus d'adaptation de l'agriculture aux changements et à la variabilité climatiques (CVC). Ce changement de paradigme met l'agent humain au centre du processus d'adaptation, ce qui peut conduire à une maladaptation. Suite aux débats sur les changements climatiques qui ont attiré l'attention scientifique et publique dans les années 1980 et 1990, l'agriculture canadienne est devenue un des points focaux de plusieurs études pionnières sur les CVC, un phénomène principalement dû à l’effet anthropique. Pour faire face aux CVC, ce n’est pas seulement la mitigation qui est importante mais aussi l’adaptation. Quand il s'agit de l'adaptation, c'est plutôt la variabilité climatique qui nous intéresse que simplement les augmentations moyennes des températures. L'objectif général de ce mémoire de maîtrise est d'améliorer la compréhension des processus d'adaptation et de construction de la capacité d'adaptation ai niveau de la ferme et de la communauté agricole à travers un processus ascendant, c’est-à-dire en utilisant l'approche de co-construction (qui peut également être considéré comme une stratégie d'adaptation en soi), pour développer une gestion et des outils de planification appropriés aux parties prenantes pour accroître ainsi la capacité d'adaptation de la communauté agricole. Pour y arriver, l'approche grounded theory est utilisée. Les résultats consistent de cinq catégories interdépendantes de codes élargis, conceptuellement distinctes et avec un plus grand niveau d'abstraction. La MRC du Haut-Richelieu a été choisie comme étude de cas en raison de plusieurs de ses dimensions agricoles, à part de ses conditions biophysiques favorables. 15 entrevues ont été menées avec les agriculteurs. Les résultats montrent que si certains agriculteurs ont reconnu les côtés positifs et négatifs des CVC, d’autres sont très optimistes à ce sujet comme se ils ne voient que le côté positif; d'où la nécessité de voir les deux côtés des CVC. Aussi, il y a encore une certaine incertitude liée aux CVC, qui vient de la désinformation et la désensibilisation des agriculteurs principalement en ce qui concerne les causes des CVC ainsi que la nature des événements climatiques. En outre, et compte tenu du fait que l'adaptation a plusieurs caractéristiques et types, il existe de nombreux types d'adaptation qui impliquent à la fois l'acteur privé et le gouvernement. De plus, les stratégies d'adaptation doivent être élaborées conjointement par les agriculteurs en concert avec d'autres acteurs, à commencer par les agronomes, car ils servent en tant que relais important entre les agriculteurs et d'autres parties prenantes telles que les institutions publiques et les entreprises privées.
Resumo:
Es un análisis exhaustivo de las dimensiones sociales del cambio climático, pues se considera una prioridad para el desarrollo humano aprender a vivir con sus efectos. Se presentan una serie de opciones que puede afrontar la humanidad en esta tarea estrictamente defensiva de adaptación a los riesgos del calentamiento global de la Tierra. Es una obra de referencia para los estudiantes de pregrado y postgrado interesados en los estudios sobre cambio climático, geografía y desarrollo.
Resumo:
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management