998 resultados para Chemistry, Physical and theoretical.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shift of the photoluminescence (PL) emission was observed in ZnS prepared by microwave assisted solvothermal method with the increase of the time in microwave. In this work we reported a study of the optical behavior linking with the structural disorder according to XRD and FEG-TEM results. The reduction of intrinsic defects in the lattice is responsible for the decrease of electronic levels in the band gap changing the PL profile. This effect was confirmed by electronic structure calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a detailed structural and electronic characterization of PbMoO4 crystals by using a conventional hydrothermal (CH) method. The samples were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), field-emission gun scanning electron microscopy (FEG-SEM) and photoluminescence (PL) measurements. In addition, first-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the band structure and density of states for the PbMoO4. Analysis of both theoretical and experimental results allows to rationalize the role of order-disorder effects in the observed green PL emissions in these ordered powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Article reports a combined experimental and theoretical analysis on the one and two-photon absorption properties of a novel class of organic molecules with a pi-conjugated backbone based on phenylacetylene (JCM874, FD43, and FD48) and azoaromatic (YB3p2S) moieties. Linear optical properties show that the phenylacetylene-based compounds exhibit strong molar absorptivity in the UV and high fluorescence quantum yield with lifetimes of approximately 2.0 ns, while the azoaromatic-compound has a strong absorption in the visible region with very low fluorescence quantum yield. The two-photon absorption was investigated employing nonlinear optical techniques and quantum chemical calculations based on the response functions formalism within the density functional theory framework. The experimental data revealed well-defined 2PA spectra with reasonable cross-section values in the visible and IR. Along the nonlinear spectra we observed two 2PA allowed bands, as well as the resonance enhancement effect due to the presence of one intermediate one-photon allowed state. Quantum chemical calculations revealed that the 2PA allowed bands correspond to transitions to states that are also one-photon allowed, indicating the relaxation of the electric-dipole selection rules. Moreover, using the theoretical results, we were able to interpret the experimental trends of the 2PA spectra. Finally, using a few-energy-level diagram, within the sum-over-essential states approach, we observed strong qualitative and quantitative correlation between experimental and theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the infrared (IR) carbonyl band of some 3-(4'-substituted phenylsulfonyl)-1-methyl-2-piperidones 1-5 bearing as substituents: OMe 1, Me 2, H 3, Cl 4 and NO2 5, supported by B3LY13/6-31G(d,p) calculations along with NBO analysis (for 1, 3 and 5) and X-ray diffraction (for 5), indicated the existence of three stable conformations i.e. quasi-axial (q-ax), syn-clinal (s-cl) and quasi-equatorial (q-eq). In the gas phase, the q-ax conformer is calculated as the most stable (ca. 88%) and the least polar, the s-cl conformer is less stable (ca. 12%) but more polar, and the q-eq conformer is the least stable (ca. 1%) and the most polar of the three conformers evaluated. The sum of the most important orbital interactions from NBO analysis and the trend of the electrostatic interactions accounts for the relative populations as well as for the v(CO) frequencies of the q-ax. s-cl and q-eq conformers calculated in the gas phase. The unique IR v(CO) band in CCl4 may be ascribed to the most stable q-ax conformer. The more intense (60%) high frequency doublet component in CHCl3 may be assigned to the summing up of the least stable q-eq and the less stable s-cl conformers, as their frequencies are almost coincident. The occurrence of only a single v(CO) band in both CH2Cl2 and CH3CN supports the fact that the v(CO) band of the two more polar conformers appear as a single band. Additional support to this rationalization is given by the single point PCM method, which showed a progressive increase of the q-eq + s-cl/q-ax population ratio going from the gas phase to CCl4, to CHCl3, to CH2Cl2 and to CN3CN. X-ray single crystal analysis of 5 indicates that this compound displays a quasi-axial geometry with respect to the [O=C-CH-S] moiety, and that the 2-piperidone ring assumes a slightly distorted half-chair conformation. In the crystal packing, molecules of 5 are arranged into supramolecular layers linked through C-H center dot center dot center dot O interactions along with it pi center dot center dot center dot pi interactions between adjacent benzene rings. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gedunin compound (C28H34O6) is a natural product extracted from Trichilia pallida that has shown a wide activity. The crystallographic structure shows two conformers in the asymmetric unit, which differ in a rotation of the furan group. To understand this molecular arrangement, the density functional calculations. Molecular Electrostatic Potential (MEP) and thermodynamic function calculation have been performed at the B3LYP/6-311++g(d,p) level. Both conformers were optimized and the agreement with the experimental structure was very good, making possible further theoretical analysis of the structure. The inter-conversion between two conformers depends on the energy barrier. This process is studied in the vacuum and shows two transition states with a low energetic barrier for a potential energy curve scanning rigid around furan group: 4.37 kcal/mol and 16.52 kcal/mol. As the first transition state has a notably lower energetic barrier, the preferred inter-conversion pathway between the conformers involves the first rather than the second transition state. Understanding this transition state in detail led us to perform its optimization, showing an energetic barrier around 3.66 kcal/mol. The negative free energy and low enthalpy confirm that the process is spontaneous and exothermic. The results show that this requirement makes the existence of the two conformers in the asymmetric unit possible. The structure of molecules in the asymmetric unit is better understood when the MEP is used on the interaction between molecules. For Gedunin, both molecules have shown MEP with well-defined regions, and this behavior contributes to the observed link between molecules and for the negative regions complementing positive regions of another molecule. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Feed Materials Production Center, National Lead Company of Ohio"--Cover.