906 resultados para Chemistry, Physical Nanoscience


Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Originally planned for publication as Volume 19C, Div. IV, of the National Nuclear Energy Series. Several of the papers originally intended for this volume have appeared in ... scientific journals and were, therefore, omitted. These are listed in the Bibliography at the end of the volume."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The differential calculus.--Coordinate or analytical geometry.--Functions with singular properties.--The integral calculus.--Infinite series and their uses.--How to solve numerical equations.--How to solve differential equations.--Fourier's theorum.--Probability and the theory of errors.--The calculus of variations.--Determinants.--Collection of formulae for references.--Reference tables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Edited by Sir William Ramsay, William Macnab, and others.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supplements accompany some volumes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reproduced from typewritten copy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Translation of: Chemie der anorganischen komplex Verbindungen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Includes index.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bibliographical footnotes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N-2 adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a method for characterizing microscopic optical force fields. Two dimensional vector force maps are generated by measuring the optical force applied to a probe particle for a grid of particle positions. The method is used to map Out the force field created by the beam from a lensed fiber inside a liquid filled microdevice. We find transverse gradient forces and axial scattering forces on the order of 2 pN per 10 mW laser power which are constant over a considerable axial range (> 35 mu m). These findings suggest Future useful applications of lensed fibers for particle guiding/sorting. The propulsion of a small particle at a constant velocity of 200 mu m s(-1) is shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditional organic chemistry has long been dominated by ground state thermal reactions. The alternative to this is excited state chemistry, which uses light to drive chemical transformations. There is considerable interest in using this clean renewable energy source due to concerns surrounding the combustion byproducts associated with the consumption of fossil fuels. The work presented in this text will focus on the use of light (both ultraviolet and visible) for the following quantitative chemical transformations: (1) the release of compounds containing carboxylic acid and alcohol functional groups and (2) the conversion of carbon dioxide into other useable chemicals. Chapters 1-3 will introduce and explore the use of photoremovable protecting groups (PPGs) for the spatiotemporal control of molecular concentrations. Two new PPGs are discussed, the 2,2,2-tribromoethoxy group for the protection of carboxylic acids and the 9-phenyl-9-tritylone group for the protection of alcohols. Fundamental interest in the factors that affect CâX bond breaking has driven the work presented in this text for the release of carboxylic acid substrates. Product analysis from the UV photolysis of 2,2,2-tribromoethyl-(2â²-phenylacetate) in various solvents results in the formation of Hâatom abstraction products as well as the release of phenylacetic acid. The deprotection of alcohols is realized through the use of UV or visible light photolysis of 9-phenyl-9-tritylone ethers. Central to this study is the use of photoinduced electron transfer chemistry for the generation of ion diradicals capable of undergoing bond-breaking chemistry leading to the release of the alcohol substrates. Chapters 4 and 5 will explore the use of N-heterocyclic carbenes (NHCs) as a catalyst for the photochemical reduction of carbon dioxide. Previous experiments have demonstrated that NHCs can add to CO2 to form stable zwitterionic species known as N-heterocylic-2-carboxylates (NHCâCO2). Work presented in this text illustrate that the stability of these species is highly dependent on solvent polarity, consistent with a lengthening of the imidazolium to carbon dioxide bond (CNHCâCCO2). Furthermore, these adducts interact with excited state electron donors resulting in the generation of ion diradicals capable of converting carbon dioxide into formic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of bare graphene nanoribbons (GNRs) was investigated by ab initio density functional theory calculations with both the local density approximation (LDA) and the generalized gradient approximation (GGA). Remarkably, two bare 8-GNRs with zigzag-shaped edges are predicted to form an (8, 8) armchair single-wall carbon nanotube (SWCNT) without any obvious activation barrier. The formation of a (10, 0) zigzag SWCNT from two bare 10-GNRs with armchair-shaped edges has activation barriers of 0.23 and 0.61 eV for using the LDA and the revised PBE exchange correlation functional, respectively, Our results suggest a possible route to control the growth of specific types SWCNT via the interaction of GNRs.