947 resultados para Chemical oxygen demand
Resumo:
PtRu/C nanocatalysts were prepared by a microemulsion method using different values of water/surfactant molar ratio in order to get different particle sizes. Crystallite sizes and structural properties were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Differential scanning calorimetry measurements indicated the presence of oxides in the as-prepared catalysts. The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. copyright The Electrochemical Society.
Resumo:
In this work, the efficiency of two-stage upflow anaerobic sludge blanket (UASB) reactors was evaluated in bench scale, for treating a liquid effluent from coffee pulping. Hydraulic detention times (HDT) were 4.0; 5.2 and 6.2 days, resulting in organic loading rates (OLR) of 5.8; 3.6 and 3.0g total COD per (L-d) in the first reactor (Rl) and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g total COD per (L-d) in the second reactor (R2). The medium values of total COD affluent varied from 15.440 to 23.040 mg O 2/L, and in the effluent to the reactors 1 and 2 were from l.lOO to 11.500 mg 0 2/L and 420 to 9.000 mg O 2/L, respectively. The medium values of removal efficiencies of total COD and TSS varied from 66 to 98% and 93 to 97%, respectively, in the system of treatment with the UASB reactors, in two stages. The content of methane in the biogas varied from 69 to 89% in the Rl and from 52 to 73% in the R2. The maximum volumetric methane production of 0.483 m 3 CH 4per (m 3 reactor d) was obtained with OLR of 3.6 g total COD per (L reactor d) and HDT of 6.2 days in the Rl. The volatile fatty acids concentration was kept below 100mg/L with HDT of 5.2 and 6.2 days in the Rl and HDT of 2.6 and 3.1 days in the R2.
Resumo:
The environmental degradation observed in the Piracicaba, Capivari and Jundiaí watershed has been one of the principal preoccupations of the environmental agencies in the state of São Paulo, Brazil. In this context, there is inserted the Americana county which is cut by streams of unsuitable quality for the human consumption and other uses. The main goal of the present work was evaluated the water quality of the Recanto Creek, affluent of the Quilombo stream, at the Americana county, state of São Paulo, Brazil. The research was developed in the period from March of 2007 to March of 2008, when it was measured the flow and the following physical-chemical water quality parameters: temperature; turbidity; pH; dissolved oxygen (OD); phosphorus (P); ammonia nitrogen (NH 4); nitrate (NO 3); chemical demand of oxygen (DQO), besides total coliforms. The results demonstrated a variation of the flow from 34.3 to 375.2 L s -1, during the evaluated period. The parameters dissolved oxygen, phosphorus, ammonia nitrogen and nitrate presented values out of the limits recommended for rivers of class 3, like the Recanto Creek, suggesting water pollution due to the organic matter disposal.
Resumo:
This research aimed at studying the oxidation process, to verify the effectiveness of coliform inactivation and to evaluate the formation of ozonation disinfection byproducts (DBP) in anoxic sanitary wastewater treated with ozone/hydrogen peroxide applied at doses of 2.6 mg O3 L-1 and 2.0 mg H2O2 L-1 with contact time of 10 min and 8.1 mg O3 L-1 and 8.0 mg H2O2 L-1 with contact time of 20 min. The mean chemical oxygen demand (COD) reductions were 7.50 and 9.40% for applied dosages of 2.5-2.8 and 6.4-9.4 mg O3 L-1 + 2.0 and 8.0 mg H2O2.L-1, respectively. The Escherichia coli (E. coli) inactivation range was 2.98-4.04 log10 and the total coliform inactivation range was 2.77-4.01 log10. The aldehydes investigated were formaldehyde, acetaldehyde, glyoxal and methylglyoxal. It was observed only the formation of acetaldehyde that ranged 5.53 to 29.68 μg L-1.
Caracterização de efluentes de viveiros de engorda de rã-touro (lithobates catesbeianus, Shaw, 1802)
Resumo:
Aim: Current analysis characterizes the effluent from bullfrog-rearing ponds during the grow-out phase; Methods: Temperature, pH, dissolved oxygen, electric conductivity, turbidity, total phosphorus, N-NH3, N-NO3, BOD5 and COD and the number of thermotolerant coliforms (Escherichia coli) of the inlet and outlet water of the ponds were analyzed twice a week. Assay consisted of a completely randomized experimental design with two treatments (inlet and outlet water) and six repetitions in a split-plot, coupled to collection over time as subplot; Results: All variables were significantly different (p < 0.05) between treatments and over time (p < 0.05). Average rates of temperature, pH and dissolved oxygen levels of the supply water were higher when compared to those of the effluent. The other variables such as conductivity, turbidity, total phosphorus, ammonia, nitrate, biological oxygen demand, chemical oxygen demand and E. coli were higher in the effluent when compared to rates in the supply water; Conclusions: The management during grow-out phase caused the deterioration of the water quality, with increasing levels of dissolved nutrients and the number of thermotolerant coliform. Ammonia and phosphorus levels in the effluent, caused by waste food, skin and feces, accelerate the eutrophication process of the receiving water body. Further studies on effluent treatment are required.
Resumo:
Fish farms' water quality management is analyzed with regard to the management employed and the different trophic states are compared within the system during the dry and rainy seasons. Six sites were marked two in the water supply (P1 and P2), and four within the fish farm (P3 to P6). Whereas sites P1 and P2 (water supply) were characterized as oligotrophic, the others were mesotrophic and eutrotrophic sites. Environmental variables, mainly nutrients, conductivity, COD, BOD5 and TSS tended to increase as from P3 due to management and fertilization. Greater impact has been registered in the fish farm under analysis for variables COD, ammonia, total phosphorus and TSS during the discharge and pond emptying period. Frequent monitoring of water quality should be undertaken in fish breeding and plankton production ponds, especially in those close to P3 and P4. Removal of sediment in decantation lake or P5 is also recommended to decrease nutrient concentrations, especially phosphorus, accumulated on the bottom soil.
Resumo:
Studies to determine suitable levels of intensification are essential for developing sustainable aquaculture. The objective of this study was to evaluate the quality of effluents discharged from ponds stocked with 10 (D10), 20 (D20), 40 (D40), and 80 (D80) postlarvae of Macrobrachium amazonicum/m2. Intake and effluent water samples were taken throughout a 5.5-mo grow-out cycle. In that study, twelve 0.01-ha earthen ponds were stocked postlarvae with 0.01g. Average water exchange rate was 15%/d; water was discharged from the bottom of the ponds. Prawns were fed a commercial feed with 38% crude protein according to their biomass (3-10%) and the concentration of dissolved oxygen (DO). In our research, temperature, turbidity, total suspended solids, conductivity, DO, pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-ammonia, N-nitrite, N-nitrate, N-Kjeldahl nitrogen, total phosphorus, and soluble orthophosphate were measured every 15d throughout the experiment in the early morning (0630 to 0730h). Turbidity was lower in D10 than in D20 and D40 and total phosphorus was higher in D80 than in D10 and D20. An analysis of principal components comparing treatments and intake water showed three groups: intake, D10 and a cluster of D20, D40, and D80. On the basis of the water characteristics found in our study it appears that the farming of M. amazonicum is likely to have a low environmental impact, at least up to a stocking density of 80prawns/m2. © by the World Aquaculture Society 2013.
Electrochemical oxidation of wastewater containing aromatic amines using a flow electrolytic reactor
Resumo:
Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Anaerobic digestion applied to stillage usually results in treatment performances. However, effluents from anaerobic reactors still present a residual polluting load due to the presence of organic recalcitrant compounds. Additional treatment methods, such as coagulation-flocculation, may be utilized to improve the final effluent quality. In this study, we assessed the processes of coagulation and flocculation for sugarcane stillage samples previously submitted to anaerobic digestion, aiming to obtain optimal conditions for the physicochemical treatment. Natural corn starch and ferric chloride were tested as coagulants. While starch was considered as not suitable for the treatment for the tested conditions, ferric chloride assays presented satisfactory results. The investigated parameters included coagulant solution dose, rapid mixing gradient and time, flocculation gradient and time, and sedimentation time. Their adjusted values at which better performances obtained were, respectively, 1.6 g L-1, 325 rpm, 10 s, 65 rpm, 20 and 20 min. The best color, turbidity, and chemical oxygen demand removal efficiencies were 95, 97, and 65%, respectively. Stillage pH variation to alkaline conditions did not result in improved removal efficiencies. Although relatively high removal efficiencies of constituents were obtained, the final effluent characteristics did not fit regulations of water reuse in the agriculture through fertigation. However, stillage can definitely become more easily managed if better final effluent quality control parameters are achieved, enabling for example effluents discharge in water bodies. © 2013 Copyright Balaban Desalination Publications.
Resumo:
Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. © 2013 Taylor & Francis.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)