927 resultados para Cerebral hemispheres
Resumo:
Evidências sugerem que a lateralização cerebral é uma característica fundamental dos vertebrados. Nos seres humanos, tem sido sugerido que o hemisfério direito é especializado no processamento de informação emocional negativa e o hemisfério esquerdo no controle da função motora. Em roedores, evidências de lateralização hemisférica são escassas. Diante disso, utilizamos a hemisferectomia para avaliar a importância relativa de cada hemisfério no controle emocional e na atividade motora espontânea em camundongos. Machos adultos foram submetidos à hemisferectomia direita (HD), hemisferectomia esquerda (HE) ou a simulação da cirurgia (SHAM). Para ajudar na interpretação dos resultados, uma amostra adicional de camundongos foi submetida à aspiração unilateral da área frontoparietal esquerda (FPE), da área frontoparietal direito (FPD) ou a simulação da cirurgia (CONT). Quinze dias após a cirurgia, a reatividade emocional e a ambulação foram avaliadas no teste de campo aberto durante 10 minutos (dividido em intervalos de 1 min). A arena de campo aberto consistiu em uma caixa de polipropileno, cujo fundo foi dividido em 16 retângulos do mesmo tamanho. O número total de retângulos cruzados pelo animal foi utilizado como a medida da atividade locomotora espontânea. Considerando-se que os camundongos evitam áreas abertas, a locomoção no centro e o tempo despendido nos retângulos centrais foram utilizados para avaliar a reatividade emocional. Em relação à atividade locomotora as duas técnicas cirúrgicas revelaram assimetrias na direção oposta. A atividade locomotora do grupo HE aumentou ao longo do período de teste e foi maior do que a dos grupos HD e SHAM. Em contraste, a atividade locomotora do grupo FPD diminuiu ao longo do período de teste e foi superior a ambos os grupos, FPE e CONT. Em relação à reatividade emocional, o grupo HE passou menos tempo na área central que os grupos HD e CONT. Não foram observadas diferenças entre FPD, FPE e o grupo CONT. Os nossos resultados sugerem que os dois hemisférios contribuem de forma assimétrica para controlar de reatividade emocional e para controlar de atividade motora em camundongos. De forma semelhante ao que é observado em humanos, o hemisfério direito dos camundongos foi mais associado com o processamento de informação emocional negativa. Em relação aos dados de hiperatividade, as diferenças observadas entre os animais hemisferectomizados e com lesão frontoparietal sugerem que mais de um circuito (ou sistema) lateralizado pode mediar a atividade locomotora espontânea.
Resumo:
Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.
Resumo:
Immunohistochemical techniques were used to characterise central neurons in the cerebral ganglia of both male and female Perna canaliculus. We used mollusc antibodies raised against neuropeptides and neurotransmitters known to control reproduction and spawning. Anti-ELH and anti-APGWamide showed very strong immunoreactivity in small type of neurons. Anti-5-HT and anti-DA immunoreactivity was mostly in large type of neurons. The labelled neurons are consistent with descriptions of neurosecretory cells implicated in the control of reproduction and spawning on the basis of earlier histological staining techniques used in this species. The use of selective immunological markers for peptides and amines appears to be a promising tool for further characterisation of neurosecretory cells, and to isolate and characterise neuropeptides and other biologically active materials involved in the control of reproduction in Perna canaliculus.
Resumo:
除虫菊酯越来越广泛地被应用于农业和家庭昆虫防治,主要通过作用于膜结合蛋白而对动物起神经毒性.迷迭香因其抗氧化功能而被应用于很多商业化的除虫菊酯产品中.本实验以大鼠大脑突触体ATP酶为研究对象,对除虫菊酯和迷迭香的药理学进行了研究.用Percoll梯度离心法分离突触体,通过检测无机磷的量来测定总ATP酶和Mg2+-ATP酶活性.结果表明,除虫菊酯在浓度为10 μmol/L时总ATP酶和Mg2+-ATP酶分别降低到对照的80.3%和46.9%.迷迭香在浓度为0.3~30 μmol/L时几乎不影响ATP酶活性,当浓度上升到3 000 μmol/L时,总ATP酶活性降低到66.8%,而Mg2+-ATP酶活性降低到54.5%. 10 μmol/L 除虫菊酯和30 μmol/L迷迭香混合物引起总ATP酶和Mg2+-ATP酶分别降低到72.9%和33.4%.结论: 1) 除虫菊酯能抑制大鼠大脑ATP酶活性; 2) 迷迭香只在高浓度下才对ATP酶有抑制作用; 3) 迷迭香能增强除虫菊酯对ATP酶的抑制作用.图3参19
Resumo:
Since the 19th century, people have long believed that the function of cerebellum was restricted to fine motor control and modulation. In the past two decades, however, more and more studies challenged this traditional view. While the neuroanatomy of the cerebellum from cellular to system level has been well documented, the functions of this neural organ remain poorly understood. This study, including three experiments, attempted to further the understanding of cerebellar functions from different viewpoints. Experiment One used the parametric design to control motor effects. The activation in cerebellum was found to be associated with the difficulty levels of a semantic discrimination task, suggesting the involvement of the cerebellum in higher level of language functions. Moreover, activation of the right posterior cerebellum was found to co-vary with that of the frontal cortex. Experiment Two adopted the cue-go paradigm and event-related design to exclude the effects of phonological and semantic factors in a mental writing task. The results showed that bilateral anterior cerebellum and cerebral motor regions were significantly activated during the task and the hemodynamic response of the cerebellum was similar to those of the cerebral motor cortex. These results suggest that the cerebellum participates in motor imagination during orthographic output. Experiment Three investigated the learning process of a verb generation task. While both lateral and vermis cerebellum were found to be activation in the task, each was correlated a separate set of frontal regions. More importantly, activations both in the cerebellum and frontal cortex decreased with the repetition of the task. These results indicate that the cerebellum and frontal cortex is jointly engaged in some functions; each serves as a part of a single functional system. Taken these findings together, the following conclusions can be drawn: 1.The cerebellum is not only involved in functions related to speech or articulation, but also participates in the higher cognitive functions of language. 2.The cerebellum participates in various functions by supporting the corresponding regions in cerebral cortex, but not directly executes the functions as an independent module. 3.The anterior part of cerebellum is related to motor functions, whereas the posterior part is involved in cognitive functions. 4.While the motor functions rely on the engagement of both sides of the cerebellar hemispheres, the higher cognitive functions mainly depend on the right cerebellum.
Resumo:
Assays on "ex vivo" sections of rat hippocampus and rat cerebral cortex, subjected to oxygen and glucose deprivation (OGD) and a three-hour reperfusion-like (RL) recovery, were performed in the presence of either GABA or the GABA(A) receptor binding site antagonist, bicuculline. Lactate dehydrogenase (LDH) and propidium iodide were used to quantify cell mortality. We also measured, using real-time quantitative polymerase chain reaction (qPCR), the early transcriptional response of a number of genes of the glutamatergic and GABAergic systems. Specifically, glial pre- and post-synaptic glutamatergic transporters (namely GLAST1a, EAAC-1, GLT-1 and VGLUT1), three GABAA receptor subunits (α1, β2 and γ2), and the GABAergic presynaptic marker, glutamic acid decarboxylase (GAD65), were studied. Mortality assays revealed that GABAA receptor chloride channels play an important role in the neuroprotective effect of GABA in the cerebral cortex, but have a much smaller effect in the hippocampus. We also found that GABA reverses the OGD-dependent decrease in GABA(A) receptor transcript levels, as well as mRNA levels of the membrane and vesicular glutamate transporter genes. Based on the markers used, we conclude that OGD results in differential responses in the GABAergic presynaptic and postsynaptic systems.
Resumo:
The aim of this study was to determine the effect of different concentrations of normobaric oxygen (NBO) on neurological function and the expression of caspase-3 and -9 in a rat model of acute cerebral ischaemia. Sprague-Dawley rats (n=120) were randomly divided into four groups (n=30 per group), including 3 groups given NBO at concentrations of 33%, 45% or 61% and one control group given air (21% oxygen). After 2 h of ischaemic occlusion, each group was further subdivided into six subgroups (n=5) during reperfusion according to the duration (3, 6, 12, 24, 48 or 72 h) and concentration of NBO (33%, 45% or 61%) or air treatment. The Fluorescence Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to detect caspase-3 and -9 mRNA and protein relative expression respectively. The Neurologic Impairment Score (NIS) was significantly lower in rats given 61% NBO ≥3 h after reperfusion when compared to the control group (P<0.05, Mann–Whitney U). NBO significantly reduced caspase-3 and -9 mRNA and protein expression when compared to the control group at all NBO concentrations and time points (P<0.05, ANOVA). The expression of caspase-3 and -9 was lower in the group given 61% NBO compared any other group, and this difference was statistically significant when compared to the group given 33% NBO for ≥48 h and the control group (both P<0.05, ANOVA). These findings indicate that NBO may inhibit the apoptotic pathway by reducing caspase-3 and -9 expression, thereby promoting neurological functional recovery after stroke.
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para a obtenção do grau de Mestre em Psicologia, ramo de Psicologia Clínica e da Saúde
Resumo:
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.
Resumo:
How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.
Resumo:
Infants' speech perception abilities change through the first year of life, from broad sensitivity to a wide range of speech contrasts to becoming more finely attuned to their native language. What remains unclear, however, is how this perceptual change relates to brain responses to native language contrasts in terms of the functional specialization of the left and right hemispheres. Here, to elucidate the developmental changes in functional lateralization accompanying this perceptual change, we conducted two experiments on Japanese infants using Japanese lexical pitch-accent, which changes word meanings with the pitch pattern within words. In the first behavioral experiment, using visual habituation, we confirmed that infants at both 4 and 10 months have sensitivities to the lexical pitch-accent pattern change embedded in disyllabic words. In the second experiment, near-infrared spectroscopy was used to measure cortical hemodynamic responses in the left and right hemispheres to the same lexical pitch-accent pattern changes and their pure tone counterparts. We found that brain responses to the pitch change within words differed between 4- and 10-month-old infants in terms of functional lateralization: Left hemisphere dominance for the perception of the pitch change embedded in words was seen only in the 10-month-olds. These results suggest that the perceptual change in Japanese lexical pitch-accent may be related to a shift in functional lateralization from bilateral to left hemisphere dominance.