998 resultados para Ceramic films
Resumo:
In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.
Resumo:
Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.
Resumo:
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.
Resumo:
Cultural policy that attempts to foster the Australian film industry’s growth and development in an era of globalisation is coming under increasing pressure. Throughout the 2000s, there has been a substantial boom in Australian horror films led by ‘runaway’ horror film Saw (2004), Wolf Creek (2005), and Undead (2003), achieving varying levels of popularity and commercial success worldwide. However, emerging within a national cinema driven by public subsidy and valuing ‘quality’ and ‘cultural content’ over ‘entertainment’ and ‘commercialism’, horror films have generally been antithetical to these objectives. Consequently, the recent boom in horror films has occurred largely outside the purview and subvention of cultural policy. This paper argues that global forces and emerging production and distribution models are challenging the ‘narrowness’ of cultural policy – a narrowness that mandates a particular film culture, circumscribes certain notions of value and limits the variety of films produced domestically. Despite their low-culture status, horror films have been well suited to the Australian film industry’s financial limitations, they are a growth strategy for producers, and a training ground for emerging filmmakers.
Resumo:
An interpretative methodology for understanding meaning in cinema since the 1950s, auteur analysis is an approach to film studies in which an individual, usually the director, is studied as the author of her or his films. The principal argument of this thesis is that proponents of auteurism have privileged examination of the visual components in a film-maker’s body of work, neglecting the potentially significant role played by sound. The thesis seeks to address this problematic imbalance by interrogating the creative use of sound in the films written and directed by Rolf de Heer, asking the question, “Does his use of sound make Rolf de Heer an aural auteur?” In so far as the term ‘aural’ encompasses everything in the film that is heard by the audience, the analysis seeks to discover if de Heer has, as Peter Wollen suggests of the auteur and her or his directing of the visual components (1968, 1972 and 1998), unconsciously left a detectable aural signature on his films. The thesis delivers an innovative outcome by demonstrating that auteur analysis that goes beyond the mise-en-scène (i.e. visuals) is productive and worthwhile as an interpretive response to film. De Heer’s use of the aural point of view and binaural sound recording, his interest in providing a ‘voice’ for marginalised people, his self-penned song lyrics, his close and early collaboration with composer Graham Tardif and sound designer Jim Currie, his ‘hands-on’ approach to sound recording and sound editing and his predilection for making films about sound are all shown to be examples of de Heer’s aural auteurism. As well as the three published (or accepted for publication) interviews with de Heer, Tardif and Currie, the dissertation consists of seven papers refereed and published (or accepted for publication) in journals and international conference proceedings, a literature review and a unifying essay. The papers presented are close textual analyses of de Heer’s films which, when considered as a whole, support the thesis’ overall argument and serve as a comprehensive auteur analysis, the first such sustained study of his work, and the first with an emphasis on the aural.
Resumo:
A combination of micro-Raman spectroscopy, micro-infrared spectroscopy and SEM–EDX was employed to characterize decorative pigments on Classic Maya ceramics from Copán, Honduras. Variation in red paint mixtures was correlated with changing ceramic types and improvements in process and firing techniques. We have confirmed the use of specular hematite on Coner ceramics by the difference in intensities of Raman bands. Different compositions of brown paint were correlated with imported and local wares. The carbon-iron composition of the ceramic type, Surlo Brown, was confirmed. By combining micro-Raman analysis with micro-ATR infrared and SEM–EDX, we have achieved a more comprehensive characterization of the paint mixtures. These spectroscopic techniques can be used non-destructively on raw samples as a rapid confirmation of ceramic type.
Resumo:
Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.
Resumo:
Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.
Resumo:
Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.
Resumo:
This paper examines the fouling characteristics of four tubular ceramic membranes with pore sizes 300 kDa, 0.1 μm and 0.45 μm installed in a pilot plant at a sugar factory for processing clarified cane sugar juices. All the membranes, except the one with a pore size of 0.45 μm, generally gave reproducible results through the trials, were easy to clean and could handle operation at high volumetric concentration factors. Analysis of fouled and cleaned ceramic membranes revealed that polysaccharides, lipids and to a lesser extent, polyphenols, as well as other colloidal particles cause fouling of the membranes. Electrostatic and hydrophobic forces cause strong aggregation of the polymeric components with one another and with colloidal particles. To combat irreversible fouling of the membranes, treatment options that result in the removal of particles having a size range of 0.2–0.5 μm and in addition remove polymeric impurities, need to be identified. Chemical and microscopic evaluations of the juices and the structural characterisation of individual particles and aggregates identified options to mitigate the fouling of membranes. These include conditioning the feed prior to membrane filtration to break up the network structure formed between the polymers and particles in the feed and the use of surfactants to prevent the aggregation of polymers and particles.