940 resultados para Cement - Additives
Resumo:
The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.
Resumo:
The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu-4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu-4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu-4:PC61BM solar cell with its vacuum-processed DCV5T-Bu-4:C-60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells. Keywords
Resumo:
The magnitude evolution of ettringite and gypsum in hydrated Portland cement mortars due to sulfate attack was detected by X-ray powder diffraction. The influences of sulfate concentration and water-to-cement ratio on the evolution of ettringite and gypsum were investigated. Experimental results show that the magnitude of ettringite formation in sodium sulfate solution follows a three-stage process, namely, the 'penetration period', 'enhance period of strength', and 'macro-crack period'. The cracking of concrete materials is mainly attributed to the effect of ettringite. The gypsum formations occurred in two stages, the 'latent period' and the 'accelerated period'. The gypsum formation including ettringite formation was relative to the linear expansion of mortars to some extend. Both water-to-cement ratio and sulfate concentration play important roles in the evolution of ettringite and gypsum. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.
Resumo:
230 p.