923 resultados para Cells Growth
Resumo:
Purpose: Up to now, there have been no established predictive markers for response to epidermal growth factor receptor (EGFR/HER1/erbB1) inhibitors alone and in combination with chemotherapy in colorectal cancer. To identify markers that predict response to EGFR-based chemotherapy regimens, we analyzed the response of human colorectal cancer cell lines to the EGFR-tyrosine kinase inhibitor, gefitinib (Iressa, AstraZeneca, Wilmington, DE), as a single agent and in combination with oxaliplatin and 5-fluorouracil (5-FU). Experimental Design: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays and analyzed by ANOVA. Apoptosis was measured by flow cytometry, poly(ADP-ribose) polymerase, and caspase 3 cleavage. EGFR protein phosphorylation was detected by Western blotting. Results: Cell lines displaying high constitutive EGFR phosphorylation (a surrogate marker for EGFR activity) were more sensitive to gefitinib. Furthermore, in cell lines exhibiting low constitutive EGFR phosphorylation, an antagonistic interaction between gefitinib and oxaliplatin was observed, whereas in cell lines with high basal EGFR phosphorylation, the interaction was synergistic. In addition, oxaliplatin treatment increased EGFR phosphorylation in those cell lines in which oxaliplatin and gefitinib were synergistic but down-regulated EGFR phosphorylation in those lines in which oxaliplatin and gefitinib were antagonistic. In contrast to oxaliplatin, 5-FU treatment increased EGFR phosphorylation in all cell lines and this correlated with synergistic decreases in cell viability when 5-FU was combined with gefitinib. Conclusions: These results suggest that phospho-EGFR levels determine the sensitivity of colorectal cancer cells to gefitinib alone and that chemotherapy-mediated changes in phospho-EGFR levels determine the nature of interaction between gefitinib and chemotherapy.
Resumo:
Ligand-induced activation of peroxisome proliferator-activated receptor gamma (PPAIR gamma) inhibits proliferation in cancer cells in vitro and in vivo; however, the downstream targets remain undefined. We report the identification of a peroxisome proliferator response element in the promoter region of the Na+/ H transporter gene NHE1, the overexpression of which has been associated with carcinogenesis. Exposure of breast cancer cells expressing high levels of PPAR gamma to its natural and synthetic agonists resulted in downregulation of NHE1 transcription as well as protein expression. Furthermore, the inhibitory effect of activated PPAR gamma on tumor colony-forming ability was abrogated on overexpression of NHE1, whereas small interfering RNA-mediated gene silencing of NHE1 significantly increased the sensitivity of cancer cells to growth-inhibitory stimuli. Finally, histopathologic analysis of breast cancer biopsies obtained from patients with type II diabetes treated with the synthetic agonist rosiglitazone showed significant repression of NHE1 in the tumor tissue. These data provide evidence for tumor-selective downregulation of NHE1 by activated PPAR gamma in vitro and in pathologic specimens from breast cancer patients and could have potential implications for the judicious use of low doses of PPAR gamma ligands in combination chemotherapy regimens for an effective therapeutic response. [Cancer Res 2009;69(22):8636-44]
Resumo:
Endoplasmic reticulum protein 29 (ERp29) is a novel endoplasmic reticulum ( ER) secretion factor that facilitates the transport of secretory proteins in the early secretory pathway. Recently, it was found to be overexpressed in several cancers; however, little is known regarding its function in breast cancer progression. In this study, we show that the expression of ERp29 was reduced with tumor progression in clinical specimens of breast cancer, and that overexpression of ERp29 resulted in G(0)/G(1) arrest and inhibited cell proliferation in MDA-MB-231 cells. Importantly, overexpression of ERp29 in MDA-MB-231 cells led to a phenotypic change and mesenchymal-epithelial transition (MET) characterized by cytoskeletal reorganization with loss of stress fibers, reduction of fibronectin (FN), reactivation of epithelial cell marker E-cadherin and loss of mesenchymal cell marker vimentin. Knockdown of ERp29 by shRNA in MCF-7 cells reduced E-cadherin, but increased vimentin expression. Furthermore, ERp29 overexpression in MDA-MB-231 and SKBr3 cells decreased cell migration/invasion and reduced cell transformation, whereas silencing of ERp29 in MCF-7 cells enhanced cell aggressive behavior. Significantly, expression of ERp29 in MDA-MB-231 cells suppressed tumor formation in nude mice by repressing the cell proliferative index (Ki-67 positivity). Transcriptional profiling analysis showed that ERp29 acts as a central regulator by upregulating a group of genes with tumor suppressive function, for example, E-cadherin (CDH1), cyclin-dependent kinase inhibitor (CDKN2B) and spleen tyrosine kinase (SYK), and by downregulating a group of genes that regulate cell proliferation (eg, FN, epidermal growth factor receptor ( EGFR) and plasminogen activator receptor ( uPAR)). It is noteworthy that ERp29 significantly attenuated the overall ERK cascade, whereas the ratio of p-ERK1 to p-ERK2 was highly increased. Taken together, our results showed that ERp29 is a novel regulator leading to cell growth arrest and cell transition from a proliferative to a quiescent state, and reprogramming molecular portraits to suppress the tumor growth of MDA-MB-231 breast cancer cells. Laboratory Investigation (2009) 89, 1229-1242; doi: 10.1038/labinvest.2009.87; published online 21 September 2009