987 resultados para Cell block


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Farnesyltransferase Inhibitors (FTIs) are a class of drugs known to prevent the farnesylation and subsequent membrane attachment of a number of intracellular proteins. In various studies, the administration of FTIs has been found to play a role in the activation and development of T-cells in the immune system. FTIs have also been found to act as immunomodulators in delaying MHC-II mismatched skin allografts in mice. This study focuses on the effect of the FTI, ABT-100, on the differentiation and cytokine secretion of Th1 and Th2 helper T-cells in BALB/C mice to better understand which immune responses are targeted by FTIs. Splenocytes were isolated from BALB/C mice, skewed towards either a Th1 or a Th2 phenotype with the addition of cytokines, and treated with various concentrations of ABT-100. Splenocytes were also isolated and immediately cultured in the presence of ABT-100 to observe differentiation trends of helper T-cells. Cytokine production was measured using intracytoplasmic flow cytometry analysis. I found that ABT-100 treatment does not block Th1 or Th2 cell differentiation. Instead, ABT-100 treatment appears to affect cytokine production from effector T-cells. I found that ABT-100 causes a decrease in IFN-¿ production in mature Th1 cells yet does not affect IL-4 production in mature Th2 cells. This decrease in cytokine production as a result of ABT-100 treatments provides a potential mechanism for how ABT-100 works to delay MHC-II mismatched allograft rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids (GCs) are steroidal compounds widely used to treat chronic and acute inflammatory diseases. In particular, GCs at pharmacological doses induce apoptosis of activated and naïve T cells, inhibit their proliferation and block pro-inflammatory cytokine secretion. At physiological concentrations, the effect of these steroids on T cell immunity are not yet fully understood, and various studies reported paradoxical roles exerted by GCs on T cell immunity. Here, we show that GCs surprisingly induce proliferation of activated CD4(+) T cells in the presence of IL-7, a cytokine secreted in the thymus and at mucosal sites. Increased proliferation is dependent on a GC-mediated survival of mitotic cells. Moreover, we observe a downmodulation of Th1 cytokine secretion in cells treated with GCs, an outcome which is not affected by the presence of IL-7. GCs exert thus a positive role in the presence of IL-7 by enhancing proliferation of CD4(+) T cells and simultaneously a negative role by suppressing pro-inflammatory cytokine production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The aim of the study was to evaluate the antiproliferative potency of Viscum album extract (VA-E) in human bladder carcinoma cell lines with regard to its possible use for intravesical therapy of superficial bladder cancer. MATERIALS AND METHODS: Proliferation (MTT-test or 3H-thymidine incorporation), necrotic disintegration (3H-thymidine release of prelabelled cells) and portions of apoptotic and/or necrotic cells (Annexin-V binding, propidium iodide (PI) labelling and DNA-fluorescence profiles by flow cytometry) were measured in four different human bladder carcinoma cell lines (T24, TCCSUP, J82 and UM-UC3) cultured in vitro. RESULTS: Antiproliferative effects of VA-E were observed in the four bladder carcinoma cell lines tested. Metabolic activity could also be completely abrogated by short-time contact of the cells with VA-E. Apoptosis and necrosis, as underlying mechanisms of action, were differentially expressed by the different cell lines. CONCLUSION: VA-E and cytotoxic proteins, i.e., mistletoe lectins (ML) and viscotoxins (VT), were able to block the growth of bladder carcinoma cells. Together with the immunomodulating properties of VA-E, the observed antiproliferative potency might give a rationale for the topical intravesical application of VA-E for the treatment of superficial bladder cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Tissues are endowed with protective mechanisms to counteract chronic ischemia. Previous studies have demonstrated that endogenous heme oxygenase (HO)-1 may protect parenchymal tissue from inflammation- and reoxygenation-induced injury. Nothing is known, however, on whether endogenous HO-1 also plays a role in chronic ischemia to protect from development of tissue necrosis. The aim of this study is, therefore, to evaluate in vivo whether endogenous HO-1 exerts protection on chronically ischemic musculocutaneous tissue, and whether this protection is mediated by an attenuation of the microcirculatory dysfunction. MATERIALS AND METHODS: In C57BL/6-mice, a chronically ischemic flap was elevated and fixed into a dorsal skinfold chamber. In a second group, tin-protoporphyrin-IX was administrated to competitively block the action of HO-1. Animals without flap elevation served as controls. With the use of intravital fluorescence microscopy, microcirculation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day observation period. The time course of HO-1 expression was determined by Western blotting. RESULTS: Chronic ischemia induced an increase of HO-1 expression, particularly at day 1 and 3. This was associated with arteriolar dilation and hyperperfusion, which was capable of maintaining an adequate capillary perfusion density in the critically perfused central part of the flap, demarcating the distal necrosis. Inhibition of endogenous HO-1 by tin-protoporphyrin-IX completely abrogated arteriolar dilation (44.6 +/- 6.2 microm versus untreated flaps: 71.3 +/- 7.3 microm; P < 0.05) and hyperperfusion (3.13 +/- 1.29 nL/s versus 8.55 +/- 3.56 nL/s; P < 0.05). This resulted in a dramatic decrease of functional capillary density (16 +/- 16 cm/cm(2)versus 84 +/- 31 cm/cm(2); P < 0.05) and a significant increase of apoptotic cell death (585 +/- 51 cells/mm(2)versus 365 +/- 53 cells/mm(2); P < 0.05), and tissue necrosis (73% +/- 5% versus 51% +/- 5%; P < 0.001). CONCLUSION: Thus, our results suggest that chronic ischemia-induced endogenous HO-1 protects ischemically endangered tissue, probably by the vasodilatory action of the HO-1-associated carbon monoxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Giant cell arteritis is an immune-mediated disease of medium and large-sized arteries that affects mostly people older than 50 years of age. Treatment with glucocorticoids is the gold-standard and prevents severe vascular complications but is associated with substantial morbidity and mortality. Tocilizumab, a humanised monoclonal antibody against the interleukin-6 receptor, has been associated with rapid induction and maintenance of remission in patients with giant cell arteritis. We therefore aimed to study the efficacy and safety of tocilizumab in the first randomised clinical trial in patients with newly diagnosed or recurrent giant cell arteritis. METHODS In this single centre, phase 2, randomised, double-blind, placebo-controlled trial, we recruited patients aged 50 years and older from University Hospital Bern, Switzerland, who met the 1990 American College of Rheumatology criteria for giant cell arteritis. Patients with new-onset or relapsing disease were randomly assigned (2:1) to receive either tocilizumab (8 mg/kg) or placebo intravenously. 13 infusions were given in 4 week intervals until week 52. Both groups received oral prednisolone, starting at 1 mg/kg per day and tapered down to 0 mg according to a standard reduction scheme defined in the study protocol. Allocation to treatment groups was done using a central computerised randomisation procedure with a permuted block design and a block size of three, and concealed using central randomisation generated by the clinical trials unit. Patients, investigators, and study personnel were masked to treatment assignment. The primary outcome was the proportion of patients who achieved complete remission of disease at a prednisolone dose of 0·1 mg/kg per day at week 12. All analyses were intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01450137. RESULTS Between March 3, 2012, and Sept 9, 2014, 20 patients were randomly assigned to receive tocilizumab and prednisolone, and ten patients to receive placebo and glucocorticoid; 16 (80%) and seven (70%) patients, respectively, had new-onset giant cell arteritis. 17 (85%) of 20 patients given tocilizumab and four (40%) of ten patients given placebo reached complete remission by week 12 (risk difference 45%, 95% CI 11-79; p=0·0301). Relapse-free survival was achieved in 17 (85%) patients in the tocilizumab group and two (20%) in the placebo group by week 52 (risk difference 65%, 95% CI 36-94; p=0·0010). The mean survival-time difference to stop glucocorticoids was 12 weeks in favour of tocilizumab (95% CI 7-17; p<0·0001), leading to a cumulative prednisolone dose of 43 mg/kg in the tocilizumab group versus 110 mg/kg in the placebo group (p=0·0005) after 52 weeks. Seven (35%) patients in the tocilizumab group and five (50%) in the placebo group had serious adverse events. INTERPRETATION Our findings show, for the first time in a trial setting, the efficacy of tocilizumab in the induction and maintenance of remission in patients with giant cell arteritis. FUNDING Roche and the University of Bern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dataset contains the source data for Figure 2B of Tentner et al. (2012). The data shows the percentage of cultured cell-populations that stained positively and/or negatively for apoptotic markers cleaved caspase-3 and cleaved PARP, following DNA damage treatments induced by various doses of doxorubicin (0, 2 and 10 µmole/L) in the presence (100 ng/mL) or absence (0 ng/mL) of TNF-alpha co-treatment. For the six treatment conditions investigated, cell counts were made by flow cytometry at times 6, 12, 24, and 48 h following treatment; CULTURE DETAILS: U2OS cells were obtained from ATCC were maintained at 21% oxygen and 5% CO2 in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, penicillin, streptomycin, 2mM L-glutamine, and used within 15-20 passages. The first thymidine block was released by washing the plates three times with PBS, and incubating them in fresh thymidine-free media for 12 h. A second thymidine block was then performed by re-addition of thymidine to 2.5 mM followed by incubation for an additional 18 h. Media was aspirated, plates were washed 3 with PBS, and replaced with fresh media in the presence or absence of 10 mM aphidicolin; ANALYSIS DETAILS: See supplementary journal publication; RESULT: The authors of the supplementary journal publication conclude that TNF enhances dose-dependent cell death following doxorubicin-induced DNA damage with minimal affect on dose-dependent cell-cycle arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major research area is the representation of knowledge for a given application in a compact manner such that desired information relating to this knowledge is easily recoverable. A complicated procedure may be required to recover the information from the stored representation and convert it back to usable form. Coder/decoder are the devices dedicated to that task. In this paper the capabilities that an Optical Programmable Logic Cell offers as a basic building block for coding and decoding are analyzed. We have previously published an Optically Programmable Logic Cells (OPLC), for applications as a chaotic generator or as basic element for optical computing. In optical computing previous studies these cells have been analyzed as full-adder units, being this element a basic component for the arithmetic logic structure in computing. Another application of this unit is reported in this paper. Coder and decoder are basic elements in computers, for example, in connections between processors and memory addressing. Moreover, another main application is the generation of signals for machine controlling from a certain instruction. In this paper we describe the way to obtain a coder/decoder with the OPLC and which type of applications may be the best suitable for this type of cell.