193 resultados para CeO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo estudar a influência da adição de diversos aditivos tais como óxido de silício (SiO2), óxido de bismuto (BiO2), óxido de cério (CeO2) e óxido de lantânio (La2O3) nas propriedades elétricas e dielétricas do titanato de bário (BaTiO3) policristalino. As amostras de titanato de bário foram compactadas e sinterizadas no Laboratório de Tecnologia dos Pós, do Departamento de Física da Universidade Federal do Rio Grande do Norte. Foram realizadas medidas de resistividade elétrica e constante dielétrica em função da temperatura, bem como ensaios de difração de raios-X e análise microestrutural através da microscopia eletrônica de varredura. A análise dos resultados permitiu avaliar a influência dos aditivos nas propriedades elétricas e dielétricas, e propor a utilização de cerâmicas eletrônicas a base de titanato de bário com propriedades superiores as do material existente atualmente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-ceria powders with ceria concentration varying from 0 to 12 mol% were synthesized using a polymeric precursor route based on the Pechini process. Powder characteristics were evaluated with regard to the crystallite size, BET surface area, phase distribution, nitrogen adsorption/desorption behavior, and agglomeration state. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. It was demonstrated that the synthesis method is effective to prepare nanosized powders of tetragonal zirconia single-phase. Sinterability mainly depended on the agglomeration state of powders and the monoclinic phase content, fully tetragonal zirconia ceramic, with grain size of 2.4 mu m, was obtained after addition of at least 9 mol% ceria and sintering at 1500 degrees C for 4 h. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-ceria powders with 12 mol % of CeO2 doped with 0.3 mol% of iron, copper, manganese and nickel oxides were synthesized by the conventional mixed oxide method. These systems were investigated with regard to the sinterability and electrical properties. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. Small amount of dopant such as iron reduces sintering temperature by over 150degreesC and more than 98% of tetragonal phase was retained at room temperature in samples sintered at 1450degreesC against 1600degreesC to stabilize the tetragonal phase on pure ZrO2-CeO2 system. The electrical conductivity was measured using impedance spectroscopy and the results were reported. The activation energy values calculated from the Arrhenius's plots in the temperature range of 350-700degreesC for intragrain conductivities are 1.04 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural morphological studies in pure and Ce-doped tin dioxide nanoparticles with high stability against particle growth were performed in samples, obtained using the polymeric precursor method and prepared at different annealing temperatures. A Ce-rich surface layer was used to control the particle size and stabilize SnO2 against particle growth. The formation of this segregated layer can contribute to a decreased surface energy, acting in the driving force, or reducing the surface mobility. Only the cassiterite SnO2 phase was observed below 1000 degreesC and a secondary phase (CeO2) was observed for the Ce-doped SnO2 at temperatures higher than 1000 degreesC, when de-mixing process occurs. The evolution of crystallite size, microstrain and morphology of the nanoparticles with annealing temperatures was investigated by X-ray diffraction (XRD), associated to Rietveld refinements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CO2 reforming of CH4 was carried out over Ni catalysts supported on γ-Al2O3 and CeO 2-promoted γ-Al2O3. The catalysts were characterized by means of surface area measurements, TPR, CO2 and H2 chemisorption, XRD, SEM, and TEM. The CeO2 addition promoted an increase of catalytic activity and stability. The improvement in the resistance to carbon deposition is attributed to the highest CO2 adsorption presented by the CeO2 addition. The catalytic behavior presented by the samples, with a different CH4/CO2 ratio used, points to the CH4 decomposition reaction as the main source of carbon deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state compounds with a general formula of LnL3· nH2O, where Ln stands for lighter trivalent lanthanides (lanthanum to samarium), L is 2-methoxybenzylidenepyruvate and n=1.5, 2, 2, 1.5 and 2, respectively, have been synthesized. On heating these compounds are decompose in two or three steps. They lose their hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (La to Sm) were: 222.7, 163.6, 497.7, 513.9 and 715.4 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.