947 resultados para Cd40 Ligand
Resumo:
Synthesis, structural characteristics, magnetic studies and DFT calculations in Ni(II) dinuclear complexes containing two bridging N-3(-) and an O-(HO)-O-... linkage reveal the existence of ferromagnetic interactions between Ni(II) centers via N-3(-) ligands and antiferromagnetic interactions through the H-bonded moiety. The overall magnetic behavior of the system depends on the delicate balance between these two competing interactions.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.
Resumo:
Distamycin and netropsin, a class of minor groove binding nonintercalating agents, are characterized by their B-DNA and A-T basespecific interactions. To understand the CQI I ~OIT~ ~ I ~ ~aOnMd ~c hemical basis of the above specificities, the DNA-binding characteristics of a novel synthetic analogue of distamycin have been studied. The analogue, mPD derivative, has the requisite charged end groups and a number of potential hydrogen-bonding loci equal to those of distamycin. The difference in the backbone curvatures of the ligands, distamycin, the mPD derivative, and NSC 101327 (another structurally analogous compound),is a major difference between these ligands. UV and CD spectrosoopic studies reported here show the following salient features: The mPD derivative recognizes only B-DNA, to which it binds via the minor groove. On the other hand, unlike distamycin, it binds with comparable affinities to A-T and G-C base pairs in a natural DNA. These DNA-binding properties are compared with those reported earlier for distamycin and NSC 101327 [Zimmer, Ch., & Wahnert, U. (1986) Prog. Biophys. Mol. Biol. 47, 31-1121. The backbone structures of these three ligands were compared to show the progressive decrease in curvatures in the order distamycin, mPD derivative, and NSC 101327. The plausible significance of the backbone curvature vis-&vis the characteristic B-DNA and AT-specific binding of distamycin is discussed. To our knowledge, this is the first attempt (with a model synthetic analogue) to probe the possible influence of backbone curvature upon the specificity of interactions of the distamycin class of groove-binding ligands with DNA.
Resumo:
A series of mixed ligand cobalt(III) complexes having the general formula Co(EA)X [where EA = dianion of N,N′-ethylenebis(acetylacetonimine) and X = anion of isonitroso-acetylacetone, IAA; isonitrosobenzoylacetone, IBA; isonitrosodibenzoylmethane, IDBM; isonitrosoethylacetoacetate, IEA; isonitrosoacetoacetanillide, IAN; isonitrosoethylmethylketone, IEMK; isonitrosobenzylmethylketone, IBMK and isonitrosopropiophenone, IPP] have been synthesised and characterised. A facial-cis-β structure (cis with respect to the coordinated two oxygen atoms of EA) with N,N,N,O,O,O ligational environment has been assigned for the complexes. The characterisation of the complexes has been based upon chemical analysis, electrical conductivity, magnetic moment, IR, PMR and electronic spectra.
Resumo:
In mediating endocytosis of extracellular macromolecules; the major mechanism in which cells ingest nutrients, degrade hormones and maintain the protein and lipid compositions of their organelle membrane, the cell surface receptors encounter 'coated pits', migrate continuously from one organelle to another, deliver the 'cargo' and often recycle back to the cell surface. This article is an attempt to give an account of the recent advances in our understanding of the molecular events involved in the 'round trip itinerary' of cell surface receptors.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.
Resumo:
The preparation of five different copper(I) complexes [CuSC(=NPh)(OAr)}L(n)]m (1-5) formed by the insertion of PhNCS into the Cu-OAr bond and the crystal structure analyses of three of them have been carried out. A monomeric species 1 (OAr = 2,6-dimethylphenoxide) is formed in the presence of excess PPh3 (n = 2, m = 1) and crystallizes as triclinic crystals with a = 12.419(4) angstrom, b = 13.298(7) angstrom, c = 15.936(3) angstrom, alpha = 67.09(3)-degrees, beta = 81.63(2)-degrees, gamma = 66.54(3)-degrees, V = 2224(2) angstrom3, and Z = 2. The structure was refined by the least-squares method to final R and R(w) values of 0.038 and 0.044, respectively, for 7186 unique reflections. Copper(I) 2,5-di-tert-butyl-4-methylphenoxide results in the formation of a dimeric species 2 in the presence of P(OMe)3 (n = 1, m = 2), where the coordination around Cu is trigonal. Crystals of 2 were found to be orthorhombic with a = 15.691(2) angstrom, b = 18.216(3) angstrom, c = 39.198(5) angstrom, v = 11204(3) angstrom3, and Z = 8. Least-squares refinement gave final residuals of R = 0.05 and R(w) = 0.057 with 6866 unique reflections. A tetrameric species 3 results when PPh3 is replaced by P(OMe)3 in the coordination sphere of copper(I) 2,6-dimethylphenoxide. It crystallizes in the space group P1BAR with a = 11.681 (1) angstrom, b = 13.373(2) angstrom, c = 20.127(1) angstrom, a = 88.55(l)-degrees, beta = 89.65(l)-degrees, gamma = 69.28(1)-degrees, V = 2940(l) angstrom3, and Z = 2. Least-squares refinement of the structure gave final values of 0.043 and 0.05 for R and R(w) respectively using 12214 unique reflections. In addition, a dimeric species 4 is formed when 1 equiv of PPh3 is added to the copper(I) 4-methylphenoxide, while with an excess of PPh3 a monomeric species 5 is isolated. Some interconversions among these complexes are also reported.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Palladium substituted in cerium dioxide in the form of a solid solution, Ce-0.98 Pd-0.02 O-1.98 is a new heterogeneous catalyst which exhibits high activity and 100% trans-selectivity for the Heck reactions of aryl bromides including heteroaryls with olefins. The catalytic reactions work without any ligand. Nano-crystalline Ce-0.98 Pd-0.02 O-1.98 is prepared by solution combustion method and Pd is in +2 state. The catalyst can be separated, recovered and reused without significant loss in activity.