908 resultados para Casein kinase 2


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. Methods We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. Results We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. Conclusions JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Idiopathic erythrocytosis (IE) is characterized by erythrocytosis in the absence of megakaryocytic or granulocytic hyperplasia, and is associated with variable serum erythropoietin (Epo) levels. Most patients with IE lack the JAK2 V617F mutation that occurs in the majority of polycythemia vera patients. Four novel JAK2 mutant alleles have recently been described in patients with V617F-negative myeloproliferative disorders presenting with erythrocytosis. The aims of this study were to assess the prevalence of JAK2 exon 12 mutations in IE patients, and to determine the associated clinicopathological features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of histone deacetylases may be an important target in patients with myeloproliferative neoplasms. This investigator-initiated, non-randomized, open-label phase II multi-centre study included 63 patients (19 essential thrombocythaemia, 44 polycythaemia vera) from 15 centres. The primary objective was to evaluate if vorinostat was followed by a decline in clonal myeloproliferation as defined by European Leukaemia Net. Thirty patients (48%) completed the intervention period (24 weeks of therapy). An intention-to-treat response rate of 35% was identified. Pruritus was resolved [19% to 0% (P = 0·06)] and the prevalence of splenomegaly was lowered from 50% to 27% (P = 0·03). Sixty-five per cent of the patients experienced a decrease in JAK2 V617F allele burden (P = 0·006). Thirty-three patients (52% of patients) discontinued study drug before end of intervention due to adverse events (28 patients) or lack of response (5 patients). In conclusion, vorinostat showed effectiveness by normalizing elevated leucocyte and platelet counts, resolving pruritus and significantly reducing splenomegaly. However, vorinostat was associated with significant side effects resulting in a high discontinuation rate. A lower dose of vorinostat in combination with conventional and/or novel targeted therapies may be warranted in future studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β-activated kinase-1 (TAK1) phosphorylation of NF-κB-activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB-mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The chronic myeloproliferative disorders (MPD) are clonal haemopoietic stem cell disorders.

AIMS: The incidence of JAK2 V617F mutation was sought in a population of patients with MPD.

METHODS: The JAK2 V617 mutation status was determined in 79 patients with known MPD and 59 patients with features suggestive of MPD.

RESULTS: The mutation was found in patients with polycythaemia vera, essential thrombocythaemia, idiopathic myelofibrosis and in patients with other chronic myeloproliferative disorders. Eight JAK2 V617F positive cases were identified amongst those patients with features suggestive of MPD.

CONCLUSIONS: The incidence of the JAK2 V617F mutation in MPD patients is similar to that reported by other groups. The assay confirmed and refined the diagnosis of several patients with features indicative of MPD. We suggest screening for this mutation in all patients with known and suspected MPD as identification is valuable in classification and is a potential target for signal transduction therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelin-signalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO-609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ∼17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe(267) is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the 'gatekeeper' amino acid Phe(267)Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinase-calmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in E. coli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TGA2 is a dual-function Systemic Acquired Resistance (SAR) transcription factor involved in the activation and repression of pathogenesis-related (PR) genes. Recent studies have shown that TGA2 is able to switch from a basal repressor to activator, likely, through regulatory control from its N-terminus. The N-terminus has also been shown to affect DNA binding of the TGA2 bZIP domain when phosphorylated by Casein Kinase II (CK2). The mechanisms involved for directing a switch from basal repressor to activator, and the role of kinase activity, have not previously been looked at in detail. This study provides evidence for the involvement of a CK2-like kinase in the switch of TGA2 activity from repressor to activator, by regulating the DNA-binding activity of TGA2 by phosphorylating residues in the N terminus of the protein.