764 resultados para Cascade Artificial Neural Network
Resumo:
The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Ellipsometry is a well known optical technique used for the characterization of reflective surfaces in study and films between two media. It is based on measuring the change in the state of polarization that occurs as a beam of polarized light is reflected from or transmitted through the film. Measuring this change can be used to calculate parameters of a single layer film such as the thickness and the refractive index. However, extracting these parameters of interest requires significant numerical processing due to the noninvertible equations. Typically, this is done using least squares solving methods which are slow and adversely affected by local minima in the solvable surface. This thesis describes the development and implementation of a new technique using only Artificial Neural Networks (ANN) to calculate thin film parameters. The new method offers a speed in the orders of magnitude faster than preceding methods and convergence to local minima is completely eliminated.
Resumo:
We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.
Resumo:
A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.
Resumo:
Oscillating Water Column (OWC) is one type of promising wave energy devices due to its obvious advantage over many other wave energy converters: no moving component in sea water. Two types of OWCs (bottom-fixed and floating) have been widely investigated, and the bottom-fixed OWCs have been very successful in several practical applications. Recently, the proposal of massive wave energy production and the availability of wave energy have pushed OWC applications from near-shore to deeper water regions where floating OWCs are a better choice. For an OWC under sea waves, the air flow driving air turbine to generate electricity is a random process. In such a working condition, single design/operation point is nonexistent. To improve energy extraction, and to optimise the performance of the device, a system capable of controlling the air turbine rotation speed is desirable. To achieve that, this paper presents a short-term prediction of the random, process by an artificial neural network (ANN), which can provide near-future information for the control system. In this research, ANN is explored and tuned for a better prediction of the airflow (as well as the device motions for a wide application). It is found that, by carefully constructing ANN platform and optimizing the relevant parameters, ANN is capable of predicting the random process a few steps ahead of the real, time with a good accuracy. More importantly, the tuned ANN works for a large range of different types of random, process.
Resumo:
This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.
Resumo:
Sea- level variations have a significant impact on coastal areas. Prediction of sea level variations expected from the pre most critical information needs associated with the sea environment. For this, various methods exist. In this study, on the northern coast of the Persian Gulf have been studied relation to the effectiveness of parameters such as pressure, temperature and wind speed on sea leve and associated with global parameters such as the North Atlantic Oscillation index and NAO index and present statistic models for prediction of sea level. In the next step by using artificial neural network predict sea level for first in this region. Then compared results of the models. Prediction using statistical models estimated in terms correlation coefficient R = 0.84 and root mean square error (RMS) 21.9 cm for the Bushehr station, and R = 0.85 and root mean square error (RMS) 48.4 cm for Rajai station, While neural network used to have 4 layers and each middle layer six neurons is best for prediction and produces the results reliably in terms of correlation coefficient with R = 0.90126 and the root mean square error (RMS) 13.7 cm for the Bushehr station, and R = 0.93916 and the root mean square error (RMS) 22.6 cm for Rajai station. Therefore, the proposed methodology could be successfully used in the study area.
Resumo:
In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.