939 resultados para Cardiopulmonary exercise test


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We evaluated vascular reactivity after a maximal exercise test in order to determine whether the effect of exercise on the circulation persists even after interruption of the exercise. Eleven healthy sedentary volunteers (six women, age 28 ± 5 years) were evaluated before and after (10, 60, and 120 min) a maximal exercise test on a treadmill. Forearm blood flow (FBF) was measured by venous occlusion plethysmography before and during reactive hyperemia (RH). Baseline FBF, analyzed by the area under the curve, increased only at 10 min after exercise (P = 0.01). FBF in response to RH increased both at 10 and 60 min vs baseline (P = 0.004). Total excess flow for RH above baseline showed that vascular reactivity was increased up to 60 min after exercise (mean ± SEM, before: 526.4 ± 48.8; 10 min: 1053.0 ± 168.2; 60 min: 659.4 ± 44.1 ml 100 ml-1 min-1 . s; P = 0.01 and 0.02, respectively, vs before exercise). The changes in FBF were due to increased vascular conductance since mean arterial blood pressure did not change. In a time control group (N = 5, 34 ± 3 years, three women) that did not exercise, FBF and RH did not change significantly (P = 0.07 and 0.7, respectively). These results suggest that the increased vascular reactivity caused by chronic exercise may result, at least in part, from a summation of the subacute effects of successive exercise bouts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Centrally stimulated sweat rate produced by graded exercise until exhaustion was compared to the local sweat rate induced by pilocarpine, often used as a sweating index for healthy individuals. Nine young male volunteers (22 ± 4 years) were studied in temperate environment in two situations: at rest and during progressive exercise with 25 W increases every 2 min until exhaustion, on a cycle ergometer. In both situations, sweating was induced on the right forearm with 5 ml 0.5% pilocarpine hydrochloride applied by iontophoresis (1.5 mA, 5 min), with left forearm used as control. Local sweat rate was measured for 15 min at rest. During exercise, whole-body sweat rate was calculated from the body weight variation. Local sweat rate was measured from the time when heart rate reached 150 bpm until exhaustion and was collected using absorbent filter paper. Pharmacologically induced local sweat rate at rest (0.4 ± 0.2 mg cm-2 min-1) and mean exercise-induced whole-body sweat rate (0.4 ± 0.1 mg cm-2 min-1) were the same (P > 0.05) but were about five times smaller than local exercise-induced sweat rate (control = 2.1 ± 1.4; pilocarpine = 2.7 ± 1.2 mg cm-2 min-1), indicating different sudorific mechanisms. Both exercise-induced whole-body sweat rate (P < 0.05) and local sweat rate (P < 0.05) on control forearm correlated positively with pilocarpine-induced local sweat rate at rest. Assuming that exercise-induced sweating was a result of integrated physiological mechanisms, we suggest that local and whole-body sweat rate measured during graded exercise could be a better sweating index than pilocarpine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Controversy exists regarding the diagnostic accuracy, optimal technique, and timing of exercise testing after percutaneous coronary intervention. The objectives of the present study were to analyze variables and the power of exercise testing to predict restenosis or a new lesion, 6 months after the procedure. Eight-four coronary multi-artery diseased patients with preserved ventricular function were studied (66 males, mean age of all patients: 59 ± 10 years). All underwent coronary angiography and exercise testing with the Bruce protocol, before and 6 months after percutaneous coronary intervention. The following parameters were measured: heart rate, blood pressure, rate-pressure product (heart rate x systolic blood pressure), presence of angina, maximal ST-segment depression, and exercise duration. On average, 2.33 lesions/patient were treated and restenosis or progression of disease occurred in 46 (55%) patients. Significant increases in systolic blood pressure (P = 0.022), rate-pressure product (P = 0.045) and exercise duration (P = 0.003) were detected after the procedure. Twenty-seven (32%) patients presented angina during the exercise test before the procedure and 16 (19%) after the procedure. The exercise test for the detection of restenosis or new lesion presented 61% sensitivity, 63% specificity, 62% accuracy, and 67 and 57% positive and negative predictive values, respectively. In patients without restenosis, the exercise duration after percutaneous coronary intervention was significantly longer (460 ± 154 vs 381 ± 145 s, P = 0.008). Only the exercise duration permitted us to identify patients with and without restenosis or a new lesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Subjects with chronic obstructive pulmonary disease (COPD) present breathing pattern and thoracoabdominal motion abnormalities that may contribute to exercise limitation. Twenty-two men with stable COPD (FEV1 = 42.6 ± 13.5% predicted; age 68 ± 8 years; mean ± SD) on usual medication and with at least 5 years of diagnosis were evaluated at rest and during an incremental cycle exercise test (10 watts/2 min). Changes in respiratory frequency, tidal volume, rib cage and abdominal motion contribution to tidal volume and the phase angle that measures the asynchrony were analyzed by inductive respiratory plethysmography at rest and during three levels of exercise (30-50, 70-80, and 100% maximal work load). Repeated measures ANOVA followed by pre-planned contrasts and Bonferroni corrections were used for analyses. As expected, the greater the exercise intensity the higher the tidal volume and respiratory frequency. Abdominal motion contributed to the tidal volume increase (rest: 49.82 ± 11.19% vs exercise: 64.15 ± 9.7%, 63.41 ± 10%, and 65.56 ± 10.2%, respectively, P < 0.001) as well as the asynchrony [phase angle: 11.95 ± 7.24° at rest vs 22.2 ± 15° (P = 0.002), 22.6 ± 9° (P < 0.001), and 22.7 ± 8° (P < 0.001), respectively, at the three levels of exercise]. In conclusion, the increase in ventilation during exercise in COPD patients was associated with the major motion of the abdominal compartment and with an increase in the asynchrony independent of exercise intensity. It suggests that cycling exercise is an effective way of enhancing ventilation in COPD patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to determine if bone marrow mononuclear cell (BMMC) transplantation is safe for moderate to severe idiopathic dilated cardiomyopathy (IDC). Clinical trials have shown that this procedure is safe and effective for ischemic patients, but little information is available regarding non-ischemic patients. Twenty-four patients with IDC, optimized therapy, age 46 ± 11.6 years, 17 males, NYHA classes II-IV, and left ventricular ejection fraction <35% were enrolled in the study. Clinical evaluation at baseline and 6 months after stem cell therapy to assess heart function included echocardiogram, magnetic resonance imaging, cardiopulmonary test, Minnesota Quality of Life Questionnaire, and NYHA classification. After cell transplantation 1 patient showed a transient increase in enzyme levels and 2 patients presented arrhythmias that were reversed within 72 h. Four patients died during follow-up, between 6 and 12 weeks after therapy. Clinical evaluation showed improvement in most patients as reflected by statistically significant decreases in Minnesota Quality of Life Questionnaire (63 ± 17.9 baseline vs 28.8 ± 16.75 at 6 months) and in class III-IV NYHA patients (18/24 baseline vs 2/20 at 6 months). Cardiopulmonary exercise tests demonstrated increased peak oxygen consumption (12.2 ± 2.4 at baseline vs 15.8 ± 7.1 mL·kg-1·min-1 at 6 months) and walked distance (377.2 ± 85.4 vs 444.1 ± 77.9 m at 6 months) in the 6-min walk test, which was not accompanied by increased left ventricular ejection fraction. Our findings indicate that BMMC therapy in IDC patients with severe ventricular dysfunction is feasible and that larger, randomized and placebo-controlled trials are warranted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During cardiopulmonary exercise testing (CPET), stroke volume can be indirectly assessed by O2 pulse profile. However, for a valid interpretation, the stability of this variable over time should be known. The objective was to analyze the stability of the O2 pulse curve relative to body mass in elite athletes. VO2, heart rate (HR), and relative O2 pulse were compared at every 10% of the running time in two maximal CPETs, from 2005 to 2010, of 49 soccer players. Maximal values of VO2 (63.4 ± 0.9 vs 63.5 ± 0.9 mL O2•kg-1•min-1), HR (190 ± 1 vs188 ± 1 bpm) and relative O2 pulse (32.9 ± 0.6 vs 32.6 ± 0.6 mL O2•beat-1•kg-1) were similar for the two CPETs (P > 0.05), while the final treadmill velocity increased from 18.5 ± 0.9 to 18.9 ± 1.0 km/h (P < 0.01). Relative O2 pulse increased linearly and similarly in both evaluations (r² = 0.64 and 0.63) up to 90% of the running time. Between 90 and 100% of the running time, the values were less stable, with up to 50% of the players showing a tendency to a plateau in the relative O2 pulse. In young healthy men in good to excellent aerobic condition, the morphology of the relative O2 pulse curve is consistent up to close to the peak effort for a CPET repeated within a 1-year period. No increase in relative O2pulse at peak effort could represent a physiologic stroke volume limitation in these athletes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance training increases muscle strength in older adults, decreasing the effort necessary for executing physical tasks, and reducing cardiovascular load during exercise. This hypothesis has been confirmed during strength-based activities, but not during aerobic-based activities. This study determined whether different resistance training regimens, strength training (ST, constant movement velocity) or power training (PT, concentric phase performed as fast as possible) can blunt the increase in cardiovascular load during an aerobic stimulus. Older adults (63.9 ± 0.7 years) were randomly allocated to: control (N = 11), ST (N = 13, twice a week, 70-90% 1-RM) and PT (N = 15, twice a week, 30-50% 1-RM) groups. Before and after 16 weeks, oxygen uptake (VO2), systolic blood pressure (SBP), heart rate (HR), and rate pressure product (RPP) were measured during a maximal treadmill test. Resting SBP and RPP were similarly reduced in all groups (combined data = -5.7 ± 1.2 and -5.0 ± 1.7%, respectively, P < 0.05). Maximal SBP, HR and RPP did not change. The increase in measured VO2, HR and RPP for the increment in estimated VO2 (absolute load) decreased similarly in all groups (combined data = -9.1 ± 2.6, -14.1 ± 3.9, -14.2 ± 3.0%, respectively, P < 0.05), while the increments in the cardiovascular variables for the increase in measured VO2 did not change. In elderly subjects, ST and PT did not blunt submaximal or maximal HR, SBP and RPP increases during the maximal exercise test, showing that they did not reduce cardiovascular stress during aerobic tasks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years) underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11) underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96) and control (P = 0.24) experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P < 0.01) along with lower values of systolic blood pressure (pre: 129 ± 3 vs post: 125 ± 3 mmHg; P < 0.05), stroke volume (pre: 89.4 ± 3.5 vs post: 76.8 ± 3.8 mL; P < 0.05), and cardiac output (pre: 7.00 ± 0.30 vs post: 6.51 ± 0.36 L/min; P < 0.05). Except for heart rate, the hemodynamic responses and the mean values during the two mental stress tests in the control experiment were similar (P > 0.05). In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to analyze the relationship between the anaerobic components of the maximal accumulated oxygen deficit (MAOD) and of the 30-second Wingate anaerobic test (30-WAnT). Nine male physical education students performed: a) a maximal incremental exercise test; b) a supramaximal constant workload test to determine the anaerobic components of the MAOD; and c) a 30-WAnT to measure the peak power (PP) and mean power (MP). The fast component of the excess post-exercise oxygen consumption and blood lactate accumulation were measured after the supramaximal constant workload test in order to determine the contributions made by alactic (ALMET) and lactic (LAMET) metabolism. Significant correlations were found between PP and ALMET (r=0.71; P=0.033) and between MP and LAMET(r=0.72; P=0.030). The study results suggested that the anaerobic components of the MAOD and of the 30-WAnT are similarly applicable in the assessment of ALMET and LAMET during high-intensity exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2maxand PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the child health spectrum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To examine the effect of additional cognitive demand on cycling performance in individuals with acquired brain injury (ABI). Design: Prospective observational study. Setting: Rivermead Rehabilitation Centre. Participants: Ten individuals with ABI ( 7 men, 3 women) ( traumatic brain injury 7, tumour 1, stroke 2) and 10 healthy controls ( 6 men, 4 women). Intervention: Individuals were asked to maintain a set cadence during a three-stage incremental cycling test in both single-task ( no additional task) and dual-task ( whilst performing an additional cognitive task) conditions. Results: The ABI group showed a slight slowing in cadence in stages 1 and 3 of the graded exercise test from the single-to the dual-task condition, although this was not significant ( p less than or equal to 0.05). The control group showed no slowing of cadence at any incremental stage. When directly comparing the ABI with the control group, the change in cadence observed in dual-task conditions was only significantly different in stage 3 ( p less than or equal to 0.05). Conclusions: Clinicians should be aware of the possibility that giving additional cognitive tasks ( such as monitoring exercise intensity) while individuals with acquired brain injury are performing exercises may detrimentally affect performance. The effect may be more marked when the individuals are performing exercise at higher intensities.