889 resultados para Caputo Fractional Derivative


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytic formulation of dynamic electro-thermally induced nonlinearity is developed for a general resistive element, yielding a self-heating circuit model based on a fractional derivative. The model explains the 10 dB/decade slope of the intermodulation products observed in two-tone testing. Two-tone testing at 400 MHz of attenuators, microwave chip terminations, and coaxial terminations is reported with tone spacing ranging from 1 to 100 Hz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advance of mathematical methods throughout the centuries, in particular with respect to the differential calculus, the notion of fractional derivative emerged with Leibniz and later developed by several well known scientists. Today that formalism is well used in the study of diffusion phenomena among other areas. We extend the fractional indices to matricial indices and develop a formalism to handle this generalized derivative, as well as other operators, functions and functionals in mathematical physics, originally defined for natural indices. Here we only consider 2x2 hermitian and anti-hermitian matrices. These matrices are associated to the well known Pauli matrices and Hamilton's quaternions. Applications with mathematical physics functions are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A relation showing that the Grünwald-Letnikov and generalized Cauchy derivatives are equal is deduced confirming the validity of a well known conjecture. Integral representations for both direct and reverse fractional differences are presented. From these the fractional derivative is readily obtained generalizing the Cauchy integral formula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.Gf

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45