910 resultados para Capitation of images


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the problem of finding sparse representations of a class of signals. We formalize the problem and prove it is NP-complete both in the case of a single signal and that of multiple ones. Next we develop a simple approximation method to the problem and we show experimental results using artificially generated signals. Furthermore,we use our approximation method to find sparse representations of classes of real signals, specifically of images of pedestrians. We discuss the relation between our formulation of the sparsity problem and the problem of finding representations of objects that are compact and appropriate for detection and classification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence (Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Livingstone and Hubel, 1988; Tso et al., 2001; Zeki, 1993), a general class of recognition models has emerged which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity (Hummel and Biederman, 1992; Riesenhuber and Poggio, 1999; Selfridge, 1959). However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ "featurally" are much easier to distinguish when inverted than those that differ "configurally" (Freire et al., 2000; Le Grand et al., 2001; Mondloch et al., 2002) ??finding that is difficult to reconcile with the aforementioned models. Here we show that after controlling for subjects' expectations, there is no difference between "featurally" and "configurally" transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in cortex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seventeen-month-old infants were presented with pairs of images, in silence or with the non-directive auditory stimulus 'look!'. The images had been chosen so that one image depicted an item whose name was known to the infant, and the other image depicted an image whose name was not known to the infant. Infants looked longer at images for which they had names than at images for which they did not have names, despite the absence of any referential input. The experiment controlled for the familiarity of the objects depicted: in each trial, image pairs presented to infants had previously been judged by caregivers to be of roughly equal familiarity. From a theoretical perspective, the results indicate that objects with names are of intrinsic interest to the infant. The possible causal direction for this linkage is discussed and it is concluded that the results are consistent with Whorfian linguistic determinism, although other construals are possible. From a methodological perspective, the results have implications for the use of preferential looking as an index of early word comprehension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a technique for assessing the diurnal development of convective storm systems based on outgoing longwave radiation fields. Using the size distribution of the storms measured from a series of images, we generate an array in the lengthscale-time domain based on the standard score statistic. It demonstrates succinctly the size evolution of storms as well as the dissipation kinematics. It also provides evidence related to the temperature evolution of the cloud tops. We apply this approach to a test case comparing observations made by the Geostationary Earth Radiation Budget instrument to output from the Met Office Unified Model run at two resolutions. The 12km resolution model produces peak convective activity on all lengthscales significantly earlier in the day than shown by the observations and no evidence for storms growing in size. The 4km resolution model shows realistic timing and growth evolution although the dissipation mechanism still differs from the observed data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two experiments are described which explore the relationship between parental reports of infants' receptive vocabularies at 1; 6 (Experiment 1a) or 1-3, 1;6 and 1;9 (Experiment 1b) and the comprehension infants demonstrated in a preferential looking task. The instrument used was the Oxford CD1, a British English adaptation of the MacArthur-Bates CD1 (Words & Gestures). Infants were shown pairs of images of familiar objects, either both name-known or both name-unknown according to their parent's responses on the CD1. At all ages, and on both name-known and name-unknown trials, preference for the target image increased significantly from baseline when infants heard the target's label. This discrepancy suggests that parental report underestimates infants' word knowledge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of novel labels on visual processing was investigated across two experiments with infants aged between 9 and 21 months. Infants viewed pairs of images across a series of preferential looking trials. On each trial, one image was novel, and the other image had previously been viewed by the infant. Some infants viewed images in silence; other infants viewed images accompanied by novel labels. The pattern of fixations both across and within trials revealed that infants in the labelling condition took longer to develop a novelty preference than infants in the silent condition. Our findings contrast with prior research by Robinson and Sloutsky (e.g., Robinson & Sloutsky, 2007a; Sloutsky & Robinson, 2008) who found that novel labels did not disrupt visual processing for infants aged over a year. Provided that overall task demands are sufficiently high, it appears that labels can disrupt visual processing for infants during the developmental period of establishing a lexicon. The results suggest that when infants are processing labels and objects, attentional resources are shared across modalities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cloud imagery is not currently used in numerical weather prediction (NWP) to extract the type of dynamical information that experienced forecasters have extracted subjectively for many years. For example, rapidly developing mid-latitude cyclones have characteristic signatures in the cloud imagery that are most fully appreciated from a sequence of images rather than from a single image. The Met Office is currently developing a technique to extract dynamical development information from satellite imagery using their full incremental 4D-Var (four-dimensional variational data assimilation) system. We investigate a simplified form of this technique in a fully nonlinear framework. We convert information on the vertical wind field, w(z), and profiles of temperature, T(z, t), and total water content, qt (z, t), as functions of height, z, and time, t, to a single brightness temperature by defining a 2D (vertical and time) variational assimilation testbed. The profiles of w, T and qt are updated using a simple vertical advection scheme. We define a basic cloud scheme to obtain the fractional cloud amount and, when combined with the temperature field, we convert this information into a brightness temperature, having developed a simple radiative transfer scheme. With the exception of some matrix inversion routines, all our code is developed from scratch. Throughout the development process we test all aspects of our 2D assimilation system, and then run identical twin experiments to try and recover information on the vertical velocity, from a sequence of observations of brightness temperature. This thesis contains a comprehensive description of our nonlinear models and assimilation system, and the first experimental results.