877 resultados para Capacitated clustering
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.
Resumo:
The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.
Resumo:
Peer-reviewed
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
The purpose of this thesis is to find out whether all the peer to peer lenders are unworthy of credit and also if there are single qualities or combinations of qualities that determine the probability of default of a person or group of people. Distinguishing qualities are searched with self-organizing maps (SOM). Qualities and groups of people found by the self-organizing map are then compared to the average. The comparison is carried out by looking how big proportion of borrowers meeting the criteria is two months or more behind with their payments. Research data used is collected by an Estonian peer to peer lending company during the years of 2011-2014. Data consists of peer to peer borrowers and information gathered from them.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
This master thesis work introduces the fuzzy tolerance/equivalence relation and its application in cluster analysis. The work presents about the construction of fuzzy equivalence relations using increasing generators. Here, we investigate and research on the role of increasing generators for the creation of intersection, union and complement operators. The objective is to develop different varieties of fuzzy tolerance/equivalence relations using different varieties of increasing generators. At last, we perform a comparative study with these developed varieties of fuzzy tolerance/equivalence relations in their application to a clustering method.
Resumo:
Verbal fluency tests are used as a measure of executive functions and language, and can also be used to evaluate semantic memory. We analyzed the influence of education, gender and age on scores in a verbal fluency test using the animal category, and on number of categories, clustering and switching. We examined 257 healthy participants (152 females and 105 males) with a mean age of 49.42 years (SD = 15.75) and having a mean educational level of 5.58 (SD = 4.25) years. We asked them to name as many animals as they could. Analysis of variance was performed to determine the effect of demographic variables. No significant effect of gender was observed for any of the measures. However, age seemed to influence the number of category changes, as expected for a sensitive frontal measure, after being controlled for the effect of education. Educational level had a statistically significant effect on all measures, except for clustering. Subject performance (mean number of animals named) according to schooling was: illiterates, 12.1; 1 to 4 years, 12.3; 5 to 8 years, 14.0; 9 to 11 years, 16.7, and more than 11 years, 17.8. We observed a decrease in performance in these five educational groups over time (more items recalled during the first 15 s, followed by a progressive reduction until the fourth interval). We conclude that education had the greatest effect on the category fluency test in this Brazilian sample. Therefore, we must take care in evaluating performance in lower educational subjects.
Resumo:
The distribution of psychiatric disorders and of chronic medical illnesses was studied in a population-based sample to determine whether these conditions co-occur in the same individual. A representative sample (N = 1464) of adults living in households was assessed by the Composite International Diagnostic Interview, version 1.1, as part of the São Paulo Epidemiological Catchment Area Study. The association of sociodemographic variables and psychological symptoms regarding medical illness multimorbidity (8 lifetime somatic conditions) and psychiatric multimorbidity (15 lifetime psychiatric disorders) was determined by negative binomial regression. A total of 1785 chronic medical conditions and 1163 psychiatric conditions were detected in the population concentrated in 34.1 and 20% of respondents, respectively. Subjects reporting more psychiatric disorders had more medical illnesses. Characteristics such as age range (35-59 years, risk ratio (RR) = 1.3, and more than 60 years, RR = 1.7), being separated (RR = 1.2), being a student (protective effect, RR = 0.7), being of low educational level (RR = 1.2) and being psychologically distressed (RR = 1.1) were determinants of medical conditions. Age (35-59 years, RR = 1.2, and more than 60 years, RR = 0.5), being retired (RR = 2.5), and being psychologically distressed (females, RR = 1.5, and males, RR = 1.4) were determinants of psychiatric disorders. In conclusion, psychological distress and some sociodemographic features such as age, marital status, occupational status, educational level, and gender are associated with psychiatric and medical multimorbidity. The distribution of both types of morbidity suggests the need of integrating mental health into general clinical settings.
Resumo:
The goal of most clustering algorithms is to find the optimal number of clusters (i.e. fewest number of clusters). However, analysis of molecular conformations of biological macromolecules obtained from computer simulations may benefit from a larger array of clusters. The Self-Organizing Map (SOM) clustering method has the advantage of generating large numbers of clusters, but often gives ambiguous results. In this work, SOMs have been shown to be reproducible when the same conformational dataset is independently clustered multiple times (~100), with the help of the Cramérs V-index (C_v). The ability of C_v to determine which SOMs are reproduced is generalizable across different SOM source codes. The conformational ensembles produced from MD (molecular dynamics) and REMD (replica exchange molecular dynamics) simulations of the penta peptide Met-enkephalin (MET) and the 34 amino acid protein human Parathyroid Hormone (hPTH) were used to evaluate SOM reproducibility. The training length for the SOM has a huge impact on the reproducibility. Analysis of MET conformational data definitively determined that toroidal SOMs cluster data better than bordered maps due to the fact that toroidal maps do not have an edge effect. For the source code from MATLAB, it was determined that the learning rate function should be LINEAR with an initial learning rate factor of 0.05 and the SOM should be trained by a sequential algorithm. The trained SOMs can be used as a supervised classification for another dataset. The toroidal 10×10 hexagonal SOMs produced from the MATLAB program for hPTH conformational data produced three sets of reproducible clusters (27%, 15%, and 13% of 100 independent runs) which find similar partitionings to those of smaller 6×6 SOMs. The χ^2 values produced as part of the C_v calculation were used to locate clusters with identical conformational memberships on independently trained SOMs, even those with different dimensions. The χ^2 values could relate the different SOM partitionings to each other.