1000 resultados para Capacidade Antioxidante Total


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A produção mundial de nanomateriais tem aumentado nos últimos anos, em função de suas variadas aplicações tecnológicas e, como consequência do seu crescente uso e demanda, poderão existir riscos ambientais sendo a água o ambiente onde muitas destas substâncias podem exercer efeitos deletérios. Um dos nanomaterias de carbono mais utilizados é o fulereno, um composto orgânico lipofílico que pode se comportar como carreador de moléculas tóxicas, potencializando a entrada de contaminantes ambientais em órgãos específicos, fenômeno conhecido como “cavalo de Troia”. As microcistinas (MC) são cianotoxinas produzidas por cianobactérias durante episódios de floração, afetando aos organismos aquáticos e ao ser humano. Diversos estudos demonstram que organismos expostos tanto às MCs quanto ao fulereno podem causar produção excessiva de espécies ativas de oxigênio e alterar os níveis de antioxidantes. Além disso, outro fator que pode vir a intensificar o potencial tóxico de ambos é a incidência de radiação UVA. Sendo assim, procurou-se avaliar os efeitos em parâmetros de estresse oxidativo da co-exposição ex vivo da cianotoxina microcistina-LR (MC-LR) e o nanomaterial de carbono fulereno em brânquias do peixe Cyprinus carpio sob incidência de radiação UVA. Os resultados mostraram que: (a) houve uma perda da capacidade antioxidante no tratamento com MC-LR (baixa concentração) quando coexposta com fulereno no UVA em relação com o tratamento realizado sem co-exposição com fulereno; (b) o fulereno no UV diminuiu a atividade da enzima glutationa-Stransferase (GST) quando comparado com o controle no UV; (c) a MC-LR (alta concentração) co-exposta com fulereno foi capaz de diminuir as concentrações do antioxidante glutationa (GSH) quando comparado com o mesmo tratamento tanto no UVA quanto no escuro sem a co-exposição ao fulereno; (d) o tratamento MC-LR (baixa concentração) com UVA aumentou o dano oxidativo lipídico quando comparado com o controle UVA; (e) o fulereno não causou uma maior bioacumulação da microcistina no tecido. Sendo assim, pode-se concluir que o fulereno não apresentou o potencial de carregador de moléculas nessas concentrações de microcistina, porém, a co-exposição dos compostos diminuem tanto capacidade antioxidante total, como a concentração da GSH, podendo gerar problemas a longo prazo na detoxificação da toxina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bunodosoma cangicum é uma anêmona-do-mar que habita a faixa intermarés nas regiões sul e sudeste do Brasil. Assim como outros animais característicos destes locais, esta espécie de anêmona enfrenta diariamente as mudanças nos parâmetros ambientais decorrentes do ciclo de marés, os quais podem variar conforme a estação do ano. Estas mudanças podem alterar o metabolismo oxidativo dos animais destes habtats, que pode também ser influenciado pelas diferentes estações ao longo do ano. Portanto, a influência de dois períodos distintos durante o ano além da exposição ao ar sobre parâmetros oxidativos (Capacidade antioxidante total contra radicais peroxil - ACAP, atividade da glutamato cisteína ligase - GCL, conteúdo de glutationa reduzida - GSH e nível de perxidação lipídica - LPO) foi avaliada em anêmonas-do-mar coletadas em situação de submersão ou de emersão em um perío do frio e um quente (final de inverno/começo de primavera e início de outono). A resposta destes parâmetros, bem como do conteúdo de espécies reativas de oxigênio (ERO) e de adenosina trifosfato (ATP), também foi avaliada em animais submetidos diariamente à exposição ao ar (3 h) em laboratório por 30 dias. Com relação aos parâmetros oxidativos considerando apenas os diferentes períodos do ano, uma maior atividade da GCL foi observada durante o período mais frio, assim como um maior nível de LPO neste mesmo período. Com relação à exposição ao ar, no que diz respeito às defesas antioxidantes, em animais coletados em emersão foi observado uma maior atividade da GCL durante o período quente, além de uma maior ACAP e um menor conteúdo de GSH em anêmonas-do-mar coletadas, tanto no período frio como quente. Com relação aos danos oxidativos, um maior nível de LPO foi encontrado em anêmonas-do-mar coletadas durante emersão no período mais (outono). De forma geral, não foi observado um padrão de variação dos parâmetros oxidativos em função da hora do dia, evidenciando-se apenas uma diminuição na ACAP e um aumento da GSH, em torno das 13h, em animais coletados durante a estação mais quente. As 7 anêmonas-do-mar expostas ao ar sob condições controladas de laboratório mostraram variações transitórias da ACAP (aumento) e do conteúdo de GSH (redução) após a reoxigenação. Estes resultados indicam que alguns parâmetros oxidativos de B. cangicum apresentam variação sazonal enquanto outros são afetados pela exposição ao ar. No entanto, o padrão de resposta destes parâmetros é diferente em campo e em laboratório, sugerindo que os parâmetros controlados em laboratório, tais como temperatura, fotoperíodo e iluminação, modificam a resposta do metabolismo oxidativo de B. cangicum à exposição ao ar em campo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O fulereno (C60) pertence a uma família de nanomateriais (NM) constituída exclusivamente de átomos de carbono, sendo encontrado na forma de suspensão na água (nC60). A nanoprata (nAg) possui um excepcional e amplo espectro bactericida e um custo de fabricação relativamente baixo. No entanto, pouco se sabe a respeito dos eventuais efeitos tóxicos induzidos por estes NM em organismos estuarinos. O poliqueto Laeonereis acuta tem o muco colonizado por comunidades bacterianas. Há registros de que L. acuta apresenta um gradiente corporal para concentração de EAO e capacidade antioxidante total. Neste estudo, os poliquetos foram expostos in vivo durante 24 horas ao nC60 e à nAg, separadamente. Após isso, as unidades formadoras de colônias (UFC) bacterianas foram contadas e pesadas, além de serem realizadas diversas medições bioquímicas nos poliquetos e nas bactérias. Os números de UFC bacterianas expostas ao nC60 foi menor na concentração de 0.01mg/L e os números de UFC bacterianas expostas à nAg foram similares aos dados de biomassa, diminuindo na maior concentração (1.0 mg/L) (p<0.05). A capacidade antioxidante contra radicais peroxil em homogeneizados bacterianos expostos ao nC60 foi menor na concentração de 0.1mg/L quando comparado ao controle (p<0.05). A região anterior apresentou menor capacidade antioxidante (p<0.05) nos poliquetos expostos a 1.0 mg/L, quando comparado ao controle. Os poliquetos expostos à nAg apresentaram menor capacidade antioxidante na região posterior na concentração de 1.0 mg/L quando comparado ao controle (p<0.05). O conteúdo de peróxidos lipídicos (TBARS) foi reduzido na região anterior dos poliquetos expostos nas duas menores concentrações ( 0.01 e 0.1 mg/L) de nC60 (p<0.05). Na região corporal posterior, somente os organismos expostos a maior concentração de nC60 (1.0 mg/L) mostraram aumento na concentração de TBARS quando comparado ao grupo controle (p<0.05). A atividade da enzima glutationa-Stransferase (GST) foi aumentada (p<0.05) na região média e posterior dos poliquetos expostos a 0.1 mg/L de nC60. Como conclusões pode se dizer que os dois NM induziram efeitos tóxicos ainda numa situação (escuridão) onde o fulereno não é fotoexcitado. O aumento na produção e comercialização de produtos com NM levanta a questão dos riscos ambientais associados ao desenvolvimento da nanotecnologia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB