990 resultados para Candida parapsilosis complex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was addressed to investigate the composition and antifungal activity of essential oils from leaves of Piperaceae species (Piper aduncum, Piper amalago, Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper gaudichaudianum, Piper solmsianum, Piper regnellii, Piper tuberculatum, Piper umbelata and Peperomia obtusifolia) against Candida albicans, C. parapsilosis, C. krusei and Cryptococcus neoformans. The essential oils from P. aduncum, P. gaudichaudianum and P. solmsianum showed the highest antifungal activity against Cryptococcus neoformans with the MIC of 62.5, 62.5 and 3.9 mg.mL-1, respectively. The oil from P. gaudichaudianum showed activity against C. krusei with MIC of 31.25 mg.mL-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a promising method for localized and specific inactivation of fungi and bacteria. A nontoxic light-sensitive compound is taken up by cells, which are then exposed selectively to light, which activates toxicity of the compound. We investigated the potential of sublethal PDT using light-sensitive curcumin (CUR) in combination with blue (455 nm) light to promote reactive oxygen species (ROS) formation in the form of singlet oxygen and DNA damage of Candida albicans. Surprisingly, CUR-mediated PDT but also light alone caused significantly longer comet tails, an indication of DNA damage of C. albicans when compared with the negative control. The intracellular ROS production was also significantly higher for the group treated only with light. However, PDT compared to blue light alone significantly slowed DNA repair. Comet tails decreased during 30 min visualized as a 90% reduction in length in the absence of light for cells treated with light alone, while comet tails of cells treated with PDT only diminished in size about 45%. These results indicate that complex mechanisms may result in PDT in a way that should be considered when choosing the photosensitive compound and other aspects of the treatment design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide spectrum of candidiasis and its clinical importance encourage the research with the purpose of clarifying the mechanisms of pathogenicity and identification of virulence factors of Candida sp. Therefore, the aim of this study was to verify the adhesion capacity, protease activity and genotypic diversity of oral C. albicans and C. tropicalis isolates. The adhesion ability to the extracellular matrix glycoproteins laminin and fibronectin was evaluated using the ELISA technique. The research of proteases was carried out in agar plate containing bovine albumin and through a quantitative method in buffer solution containing haemoglobin. Intra and interspecies polymorphisms was verified through random amplified polymorphic DNA (RAPD) technique. All C. albicans and C. tropicalis isolates binded to immobilised laminin and fibronectin. Ca33 and Ct13 isolates had relative adhesion index significantly higher than the other isolates for both glycoproteins (P < 0.001). Protease activity was observed in all isolates of C. albicans using either the semi-quantitative or quantitative assay. The protease activity of C. tropicalis was better detected through the quantitative assay. The genotypic diversity by RAPD revealed a heterogeneous population in both species. Nevertheless, C. tropicalis presented higher genetic variability than C. albicans strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various organisms have been characterized by molecular methods, including fungi of the genus Cryptococcus. The purposes of this study were: to determine the discriminatory potential of the RAPD (Random Amplified Polymorphic DNA) primers, the pattern of similarity of the Cryptococcus species, and discuss their useful application in epidemiological studies. We analyzed 10 isolates of each specie/group: C. albidus, C. laurentii complex, C. neoformans var. grubii, all from environmental source, and two ATCC strains, C. neoformans var. grubii ATCC 90112, and C. neoformans var. neoformans ATCC 28957 by RAPD-PCR using the primers CAV1, CAV2, ZAP19, ZAP20, OPB11 and SEQ6. The primers showed a good discriminatory power, revealing important differences between them and between species; the SEQ6 primer discriminated a larger number of isolates of three species. Isolates of C. laurentii showed greater genetic diversity than other species revealed by all six primers. Isolates of C. neoformans were more homogeneous. Only the primer CAV2 showed no amplification of DNA bands for C. albidus. It was concluded that the use of limited number of carefully selected primers allowed the discrimination of different isolates, and some primers (e. g., CAV2 for C. albidus) may not to be applied to some species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiai Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. Methods: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. Results: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. Conclusions: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiaí Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. METHODS: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. RESULTS: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. CONCLUSIONS: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disseminated MAC (dMAC) is the third most prevalent opportunistic infection in AIDS patients. In order to understand the role MAC infection plays in affecting survival of AIDS patients, a cohort of 203 suspected dMAC veterans seen at the Houston Veterans Affairs Medical Center between August 14, 1987 and December 31, 1991 were analyzed. The criteria for suspected dMAC infection was HIV+ men having a CD4+ level $\le$200 cells/mm$\sp3,$ on zidovudine treatment $\ge$1 month and who had any of the following: (a) a confirmed respiratory MAC infection, (b) fever $\ge$101$\sp\circ\rm F$ for $\ge$48 hours, (c) unexplained weight loss of 10 lbs or $\ge$10% BW over 3 months or (d) Hgb $\le$7.5 g/dl or decrease in Hgb $\ge$3.0 g/dl, while on 500-600 mg/day AZT. The study was conducted before the commencement of an effective MAC anti-mycobacterial therapy, so the true course of MAC infection was seen without the confounder of a therapeutic regimen. Kaplan-Meier and Cox regression survival analysis was used to compare 45 MAC culture positive and 118 MAC culture negative veterans. The 1 year survival rate of veterans with documented dMAC infection was 0.37 compared to 0.50 for veterans not acquiring dMAC infection. Significant differences between subgroups were also seen with the variables: PCP prophylaxis, the AIDS indicator disease Candida esophagitis, CD4+ lymphocyte level, CD4 percent lymphocyte level, WBC level, Hgb and Hct levels. Using multivariate modeling, it was determined that PCP prophylaxis (RR = 6.12, CI 2.24-16.68) was a predictor of survival and both CD4% lymphocytes $\le$6.0% (RR = 0.33, CI 0.17-0.68) and WBC level $\le$3000 cells/mm$\sp3$ (RR = 0.60, CI 0.39-0.93) were predictors of mortality. CD4+ level $\le$50 cells/mm$\sp3$ was not a significant predictor of mortality. Although MAC culture status was a significant predictor of mortality in the univariate model, a positive dMAC culture was not a significant predictor of AIDS mortality in the multivariate model. A positive dMAC culture, however, did affect mortality in a stratified analysis when baseline laboratory values were: CD8+ lymphocytes $>$600 cells/mm$\sp3,$ Hgb $>$11.0 g/dl, Hct $>$31.0% and WBC level $>$3000 cells/mm$\sp3.$ ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences—a bent I helix and an open conformation of BC loop—that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.

In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.

I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.

Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.

Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.