793 resultados para Caatrabone, Jeff
Resumo:
We examined the influence of 3 consecutive days of high-intensity cycling on blood and urinary markers of oxidative stress. Eight highly-trained male cyclists (VO2 max 76 +/- 4 mL.kg-1.min-1; mean +/- SD) completed an interval session (9 exercise bouts lasting 30 s each, at 150% peak power output) on day 1, followed by 2 laboratory-simulated 30 km time trials on days 2 and 3. The cyclists also completed a submaximal exercise trial matched to the interval session for oxygen consumption. Blood was collected pre- and post-exercise for the determination of malondialdehyde (MDA), total antioxidant status (TAS), vitamin E, and the antioxidant enzyme activity of superoxide dismutase and glutathione peroxidase, while urine was collected for the determination of allantoin. There were significant increases in plasma MDA concentrations (p < 0.01), plasma TAS (p < 0.01), and urinary allantoin excretion (p < 0.01) following the high-intensity interval session on day 1, whereas plasma vitamin E concentration significantly decreased (p = 0.028). Post-exercise changes in plasma MDA (p = 0.036), TAS concentrations (p = 0.039), and urinary allantoin excretion (p = 0.031) were all significantly attenuated over the 3 consecutive days of exercise, whereas resting plasma TAS concentration was elevated. There were no significant changes in plasma MDA, TAS, or allantoin excretion following submaximal exercise and there were no significant changes in antioxidant enzyme activity over consecutive days of exercise or following submaximal exercise. Consecutive days of high-intensity exercise enhanced resting plasma TAS concentration and reduced the post-exercise increase in plasma MDA concentrations.
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety of chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients.
Resumo:
The aim of this study was to investigate the influence of low-dose bovine colostrum protein concentrate (CPC) supplementation on selected immune variables in cyclists. Twenty-nine highly trained male road cyclists completed an initial 40-km time trial (TT(40)) and were then randomly assigned to either a supplement (n = 14, 10 g bovine CPC/day) or placebo group (n = 15, 10 g whey protein concentrate/day). After 5 wk of supplementation, the cyclists completed a second TT(40). They then completed 5 consecutive days of high-intensity training (HIT) that included a TT(40), followed by a final TT(40) in the following week. Venous blood and saliva samples were collected immediately before and after each TT(40), and upper respiratory illness symptoms were recorded over the experimental period. Compared with the placebo group, bovine CPC supplementation significantly increased preexercise serum soluble TNF receptor 1 during the HIT period (bovine CPC = 882 +/- 233 pg/ml, placebo = 468 +/- 139 pg/ml; P = 0.039). Supplementation also suppressed the postexercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC = -1.0 +/- 2.7%, placebo = -9.2 +/- 2.8%; P = 0.017) and during the following week (bovine CPC = 1.4 +/- 2.9%, placebo = -8.2 +/- 2.8%; P = 0.004). Bovine CPC supplementation prevented a postexercise decrease in serum IgG(2) concentration at the end of the HIT period (bovine CPC = 4.8 +/- 6.8%, P = 0.88; placebo = -9.7 +/- 6.9%, P = 0.013). There was a trend toward reduced incidence of upper respiratory illness symptoms in the bovine CPC group (P = 0.055). In summary, low-dose bovine CPC supplementation modulates immune parameters during normal training and after an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group.
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: (1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running (-10% gradient) at 60% VO2max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E(2), leukotriene B(4) and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P<0.05) after all three trials. Plasma prostaglandin E(2) concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B(4) did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher (P<0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage
Resumo:
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT1 and VT2), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (VO2peak = 64.5 +/- 5.2 ml[middle dot]kg-1[middle dot]min-1) performed (a) a progressive cycle test to measure VO2peak, peak power output (PPO), VT1, and VT2; (b) a time to exhaustion test (Tmax) at their VO2peak power output (Pmax); and (c) a 40-km time-trial (TT40). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 3 60% Tmax at Pmax, 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% Tmax at Pmax, recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT40 performance, VO2peak, VT1,VT2, and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT40 performance were modestly related to the changes in VO2peak, VT1, VT2, and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT40 performance were related to significant increases in VO2peak, VT1,VT2, and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.
Resumo:
Introduction: Unaccustomed eccentric exercise often results in muscle damage and neutrophil activation. We examined changes in plasma cytokines stress hormones, creatine kinase activity and myoglobin concentration, neutrophil surface receptor expression, degranulation, and the capacity of neutrophils to generate reactive oxygen species in response to in vitro stimulation after downhill running. Methods: Ten well-trained male runners ran downhill on a treadmill at a gradient of -10% for 45 min at 60% V̇O2max. Blood was sampled immediately before (PRE) and after (POST), 1 h (1 h POST), and 24 h (24 h POST) after exercise. Results: At POST, there were significant increases (P < 0.01) in neutrophil count (32%), plasma interleukin (IL)-6 concentration (460%), myoglobin (Mb) concentration (1100%), and creatine kinase (CK) activity (40%). At 1 h POST, there were further increases above preexercise values for neutrophil count (85%), plasma Mb levels (1800%), and CK activity (56%), and plasma IL-6 concentration remained above preexercise values (410%) (P < 0.01). At 24 h POST, neutrophil counts and plasma IL-6 levels had returned to baseline, whereas plasma Mb concentration (100%) and CK activity (420%) were elevated above preexercise values (P < 0.01). There were no significant changes in neutrophil receptor expression, degranulation and respiratory burst activity, and plasma IL-8 and granulocyte-colony stimulating factor concentrations at any time after exercise. Neutrophil count correlated with plasma Mb concentration at POST (r = 0.64, P < 0.05), and with plasma CK activity at POST (r = 0.83, P < 0.01) and 1 h POST (r = 0.78, P < 0.01). Conclusion: Neutrophil activation remains unchanged after downhill running in well-trained runners, despite increases in plasma markers of muscle damage.
Resumo:
The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counter-balanced. Blood was drawn immediately before and after exercise, and 1 h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P<0.05), plasma concentrations of glucose (CHO, 43%; P<0.05), lactate (CHO, 130%; placebo, 130%; P<0.01), cortisol (CHO, 100%; placebo, 161%; P<0.01), myoglobin (CHO, 194%; placebo, 342%; P<0.01) all increased significantly. One hour post-exercise, plasma myoglobin concentration (CHO, 331%; placebo, 482%; P<0.01) and neutrophil count (CHO, 151%; placebo, 230% P<0.01) both increased further above baseline. CHO significantly attenuated plasma myoglobin concentration and the neutrophil count after exercise (P<0.01), but did not affect plasma cortisol concentration. The effects of CHO on plasma myoglobin concentration may be due to alterations in cytokine synthesis, insulin responses or myoglobin clearance rates from the bloodstream during exercise. Plasma cortisol responses to CHO during exercise may depend on the intensity of exercise, or the amount of CHO consumed. Lastly, cortisol appears to play a minor role in the mobilisation of neutrophils after intense exercise.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
PURPOSE: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. METHODS: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; VO(2peak) = 64.5 +/- 5.2 mL x kg(-1) min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption (VO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T(max)) at their VO(2peak) power output (P(max)), as well as 3) a 40-km time-trial (TT(40)). Subjects were matched and assigned to one of four training groups (G(2), N = 8, 8 x 60% T(max) at P(max), 1:2 work:recovery ratio; G(2), N = 9, 8 x 60% T(max) at P(max), recovery at 65% HR(max); G(3), N = 10, 12 x 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1), G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. RESULTS: All HIT groups improved TT(40) performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to +1.1%; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their VO(2peak) significantly more than G(CON) (+1.0%; P < 0.05). CONCLUSION: The present study has shown that when HIT incorporates P(max) as the interval intensity and 60% of T(max) as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.
Resumo:
Serial killers are among the most popular and enduring character types in contemporary culture. In this exegesis I investigate one of the reasons for this popularity by examining the representational relationships between serial killers and serial consumers. I initially establish that all monsters, whether they are vampires, werewolves or serial killers, emerge from cultural anxieties and signify the anxiety which gave them birth. I go on to identify that the cultural anxiety at play with serial killers is consumerism and in doing so, I identify two key parallels between the serial killer and the consumer, namely a sense of lack and a desire for transformation. I then examine the ways in which the serial killer is representative of the consumer in three exemplar texts, The Silence of the Lambs by Thomas Harris, American Psycho by Bret Easton Ellis and Darkly Dreaming Dexter by Jeff Lindsay. I go on to self-reflexively examine the creation of my novel Carnivore, the accompanying draft of which has been influenced by both the exemplar texts and the findings of the exegesis.
Resumo:
This guide canvasses a range of practice strategies and interventions utilised by workers and services who engage with young people experiencing problematic AOD use whilst also exploring the many and varied challenges associated with this type of work.
Resumo:
“The Cube” is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world’s largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University of Technology’s (QUT) newly established Science and Engineering Centre, designed to showcase QUT’s teaching and research capabilities in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. In this application paper we describe, the Cube, its technical capabilities, design rationale and practical day-to-day operations, supporting up to 70,000 visitors per week. Essential to the Cube’s operation are five interactive applications designed and developed in tandem with the Cube’s technical infrastructure. Each of the Cube’s launch applications was designed and delivered by an independent team, while the overall vision of the Cube was shepherded by a small executive team. The diversity of design, implementation and integration approaches pursued by these five teams provides some insight into the challenges, and opportunities, presented when working with large distributed interaction technologies. We describe each of these applications in order to discuss the different challenges and user needs they address, which types of interactions they support and how they utilise the capabilities of the Cube facility.