999 resultados para CRYSTAL POLYMORPHISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within RUNX2 have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture. Carriers of the 11A allele were found to be nearly twice as likely to have sustained fracture. Within the fracture category, there was a significant tendency of 11A carriers to present with fractures of bones of intramembranous origin compared to bones of endochondral origin (p=0.005). In a population of random subjects, the 11A allele was associated with decreased levels of serum collagen cross links (CTx, p=0.01), suggesting decreased bone turnover. The transactivation function of the 11A allele was quantitatively decreased. Interestingly, we found no effect of the 11A allele on BMD at multiple skeletal sites, although these were not the sites where a relationship with fracture was most evident. These findings suggest that the 11A allele is a biologically relevant polymorphism that influences serum CTx and confers enhanced fracture risk in a site-selective manner related to intramembranous bone ossification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2010 there has again been an increase in the number of papers published involving piezoelectric acoustic sensors, or quartz crystal microbalances (QCM), when compared to the last period reviewed 2006-2009. The average number of QCM publications per annum was 124 in the period 2001-2005, 223 in the period 2006-9, and 273 in 2010. There are trends towards increasing use of QCM in the study of protein adsorption to surfaces (93% increase), homeostasis (67% increase), protein-protein interactions (40% increase), and carbohydrates (43% increase). New commercial systems have been released that are driving the uptake of the technology for characterisation of binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights theoretical and practical aspects of the principals that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells, and membrane interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alunite supergroup of minerals is a large hydroxy-sulfate mineral group, which has seen renewed interest following their discovery on Mars. Numerous reviews exist concerning nomenclature, formation, and natural occurrence of this mineral group. Sulfate minerals in general are widely studied and their vibrational spectra are well characterized. However, no specific review concerning alunite and jarosite spectroscopy and crystal structure has been forthcoming. This review focuses on the controversial aspects of the crystal structure and vibrational spectroscopy of jarosite and alunite minerals. Inconsistencies regarding band assignments especially in the 1000–400 cm−1 region plague these two mineral groups and result in different band assignments among the various spectroscopic studies. There are significant crystallographic and magnetic structure ambiguities with regards to ammonium and hydronium end-members, namely, the geometry these two ions assume in the structure and the fact that hydronium jarosite is a spin glass. It was also found that the synthetic causes for the super cell in plumbojarosite, minamiite, huangite, and walthierite are not known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that it is possible to detect specifically adsorbed bacteriophage directly by breaking the interactions between proteins displayed on the phage coat and ligands immobilized on the surface of a quartz crystal microbalance (QCM). This is achieved through increasing the amplitude of oscillation of the QCM surface and sensitively detecting the acoustic emission produced when the bacteriophage detaches from the surface. There is no interference from nonspecifically adsorbed phage. The detection is quantitative over at least 5 orders of magnitude and is sensitive enough to detect as few as 20 phage. The method has potential as a sensitive and low-cost method for virus detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project explored the potential for halogen bonds to predictably organise metal-containing molecular building blocks in crystalline materials. A novel method for the halogen bond mediated crystal engineering of metal complexes was discovered, which led to the preparation of new materials with potential applications in molecular switching devices and advanced memory storage systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that it is possible to detect specifically adsorbed bacteriophage directly by breaking the interactions between proteins displayed on the phage coat and ligands immobilized on the surface of a quartz crystal microbalance (QCM). This is achieved through increasing the amplitude of oscillation of the QCM surface and sensitively detecting the acoustic emission produced when the bacteriophage detaches from the surface. There is no interference from nonspecifically adsorbed phage. The detection is quantitative over at least 5 orders of magnitude and is sensitive enough to detect as few as 20 phage. The method has potential as a sensitive and low-cost method for virus detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of vertically aligned single-crystalline silicon nanostructures via "self-organized" maskless etching in Ar+ H 2 plasmas is studied. The shape and aspect ratio can be effectively controlled by the reactive plasma composition. In the optimum parameter space, single-crystalline pyramid-like nanostructures are produced; otherwise, nanocones and nanodots are formed. This generic nanostructure formation approach does not involve any external material deposition. It is based on a concurrent sputtering, etching, hydrogen termination, and atom/radical redeposition and can be applied to other nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione transferases are known to be important enzymes in the metabolism of xenobiotics. In humans genetic polymorphisms have been reported for the hGSTM1 and hGSTT1 genes leading to individual differences in susceptibility towards toxic effects, such as cancer. This study describes the distribution of the two polymorphisms of hGSTT1 and hGSTM1 in the normal Chinese population of Shanghai. Out of 219 healthy individuals having been genotyped for GSTTI and GSTMI, 108 (49%) were identified to be homozygously deficient for the GSTT1 gene and 107 (49%) for the GSTM1 gene.