941 resultados para CREATING EXTERNAL-FIELD
Resumo:
The lifetime of a plasma channel produced by self-guiding intense femtosecond laser pulses in air is largely prolonged by adding a high voltage electrical field in the plasma and by introducing a series of femtosecond laser pulses. An optimal lifetime value is realized through adjusting the delay among these laser pulses. The lifetime of a plasma channel is greatly enhanced to 350 ns by using four sequential intense 100fs( FWHM) laser pulses with an external electrical field of about 350kV/m, which proves the feasibility of prolonging the lifetime of plasma by adding an external electrical field and employing multiple laser pulses. (c) 2006 Optical Society of America.
Resumo:
The dependences of the recording properties of LiNbO3:Fe:Mn crystals on an external electric field (applied in the recording or fixing phase of the nonvolatile holographic recording process) are numerically investigated and the optimal conditions for applying an external electric field in this two-step process of nonvolatile holographic recording are discussed in detail. Significant improvement of the photorefractive performance has been found and experimental verifications using a small external electric field are described. Moreover, direct measures relating to the dominant photovoltaic mechanism in the doubly doped LiNbO3 crystals and the unconventional grating-enhanced fixing are revealed by applying an external electric field in the recording and the fixing phases, respectively.
Resumo:
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
Resumo:
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Resumo:
With the help of time resolved magneto-optic Kerr rotation measurements, the optically induced spin precession in heavily doped diluted magnetic semiconductor Ga0.937Mn0.063 As was observed. It was found that the effective g factor increases with increasing magnetic field, which is attributed to the magnetic-field-induced increase of the density of the non-localized holes. Those free holes will couple with the localized magnetic ions by p-d interactions, leading to the formation of spontaneous magnetization in Ga0.937Mn0.063As, which in turn to the enhancement of the effective g factor.
Resumo:
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin-orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov-Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin-orbit interaction k(R)L variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.
Resumo:
The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature; different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.
Resumo:
An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.
Resumo:
We have conducted numerical studies of ballistic electron transport in a semiconductor II-structure when an external transverse electric field is applied. The device conductance as a function of electron energy and the strength of the transverse electric field is calculated on the basis of tight-binding Green's function formalism. The calculations show that a relatively weak electric field can induce very large decrease in the electron transmission across the structure. When the transverse electric field is sufficiently strong, electrons can hardly be transported through the device. Thus the performance of the device can be greatly improved for it is much easier to control electron transport through the device with an external transverse electric field.
Resumo:
he first order perturbations of the energy levels of a stationary hydrogen atom in a static external gravitational field, with Schwarzschild metric, are investigated. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, 4P, 4D, and 4F levels. The results show that the energy-level shifts of the states with total angular momentum quantum number 1/2 are all zero, and the ratio of absolute energy shifts with total angular momentum quantum number 5/2 is 145. This feature can be used to help us to distinguish the gravitational effect from other effects.
Resumo:
The fully relaxed single-bond torsional potentials and orientation-related rotational potentials of 2,2'-bithiophene (BT) under the interaction of an external electric field (EF) constructed by point charges have been evaluated with semi-empirical AMI and PM3 calculations. The torsional potentials are sensitive to both EF strength and direction. While the EF is parallel to the molecular long axis, the torsional barrier around C-x-C-x' bond obviously rises with increasing the EF strength, whereas the relative energies of syn and anti minima show a slight change. The interaction between the EF and the induced dipole moment has been proposed to elucidate this observation. On the other hand, the relative energy difference between the syn and anti minima shows an obvious change, while the EF is perpendicular to the molecular long axis. This feature has been ascribed to the interaction between the EF and the permanent dipole moment of BT. Furthermore, conformational and orientational analyses in two dimensions have been carried out by changing the torsional and rotational angles in the different EF. The conformation and orientation of a gas-phase BT in the EF are governed by both the above factors.
Resumo:
Conformational analysis of 2,2'-bithiophene (BT) under the influence of an electric field (EF) constructed by point charges has been performed by using semi-empirical Austin Model 1 (AM1) and Parametric model number 3 (PM3) calculations. When the EF perpendicular to the molecular conjugation chain is applied, both AM1 and PM3 calculations show an energy increase of the anti-conformation. AM1 predicts that the global minimum shifts to syn-conformation when the EF strength is larger than a critical value. and PM predicts that the local minimum in anti-conformation vanishes. This kind of EF effect has been ascribed to the EF and dipole moment interaction.